Chapter 4. Fundamental EquationsJr

Two key problems in thermodynamics are to relate properties to each other and to
develop ways to measure them accurately in the laboratory. For example, we have
seen in Chapter 2 that the relationship between the heat capacities at constant
volume and at constant pressure for an ideal gas is:

Cy=C/+R

It is highly desirable to obtain a general relationship between the two heat capaci-
ties,

C,=(0U/dT), and C,=(dH/9T), ,

for non-ideal gases, liquids and solids. In the present chapter, we develop a formal
approach that allows us to obtain such relationships between thermodynamic de-
rivatives in a systematic fashion.

An important consideration in developing thermodynamic relationships and
methods for determining derived thermodynamic functions such as the energy,
enthalpy, or entropy, is the preservation of “information content” as one moves
from one function to another. In the rest of this chapter, we demonstrate how all
these functions, when expressed in terms of their “natural” variables, are essential-
ly equivalent to each other and encompass all available information about equilib-
rium states of a system. These equivalent, complete descriptions of thermodynam-
ic properties are called fundamental equations and are the main topic of the pre-
sent chapter.

4.1 Thermodynamic Calculus

As already mentioned in Chapter 1, for a given quantity of a one-component sys-
tem at equilibrium, all properties are completely determined by specifying the
values of two additional independent thermodynamic variables. More generally,
n+2 independent thermodynamic variables, where n is the number of components
in a system, are needed to fully characterize equilibrium states for multicompo-
nent systems. Common thermodynamic variables used to specify equilibrium

t Draft material from “Statistical Thermodynamics,” © (2012), A.Z. Panagiotopoulos
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2 Chapter 4. Fundamental Equations

states in such systems are the total volume V, number of moles of each component,
N4,N,,...N,, temperature T and pressure P. The total entropy S can also be specified
and controlled with some effort, namely by performing reversible processes and
using the definition developed in Ch. 3,

AS=[8Q™ /T
to measure entropy changes.

It is clear from empirical observations that not all combinations of variables
result in a unique specification of the state of thermodynamic systems. This is es-
pecially apparent when the possibility of coexistence between phases of different
properties is taken into account. For example, at a given temperature and at the
saturation pressure in a one-component system, there are infinitely many ways in
which two phases can coexist as equilibrium thermodynamic states differing in the
relative amounts of the two phases. In other words, specifying the pressure and
temperature at vapor-liquid equilibrium of a pure fluid does not uniquely specify
the relative amounts of liquid and vapor. Similarly, a given pressure and volume
(or density) of a binary mixture can be realized in many different ways for a range
of temperatures in a two-phase system. In addition to the issue of the uniqueness
of thermodynamic states, certain “privileged” sets of variables are natural for spe-
cific properties. Thermodynamic functions expressed in their natural variables
contain more complete information than the same properties expressed in other
sets of variables. In order to explain why this is the case, let us consider the com-
bined statement of the First and Second Laws for closed systems derived in § 3.4:

dU =TdS—PdV (4.1)

This expression suggests that the volume and entropy constitute a “good” set of
variables for describing the energy U of a closed system. More formally, we write:

v=usy) = dv=| 22| as+[ Y| av (4.2)
as ), v )

The derivatives are identified as:

(B_U] =T and (B_UJ =-P (4.3)
as ), v )

To obtain the full expression for U as a function also of the amount of material
in a system in addition to S and V, we need to augment Eq. 4.2 by additional varia-
bles, namely the amount of material of each component present in the system. For
this purpose, we define an additional partial derivative, written here for a one-
component system:
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4.1 Thermodynamic Calculus 3

U

— (4.4)
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This derivative defines an important new thermodynamic variable, the chemi-
cal potential p of a component. The chemical potential is an intensive variable that
has units of specific energy, [J]/mol]. Its physical interpretation in classical thermo-
dynamics is somewhat obscure when compared to the two other more intuitively
understood first-order derivatives of the energy function given by Eqgs. 4.3. How-
ever, the chemical potential plays just as fundamental a role in thermodynamics as
temperature and pressure.

An example of a relatively simple instrument that measures chemical poten-
tials is the pH meter, which many of us have used in chemistry laboratories. The
instrument measures the chemical potential of hydrogen ions, not their concentra-
tion. Of course, the two are related, with the chemical potential increasing with
increasing concentration - but there is a clear distinction. After all, density also
increases with pressure, but pressure and density are not usually confused to be
the same physical quantity! Another way to develop a physical feeling for the
chemical potential is to consider your senses of smell and taste. What exactly is
being “measured” when you find that a food tastes sour, or when you smell a fra-
grance from a flower? One may naively suggest that it is the concentration of the
molecules that correlates with the intensity of taste and smell, but in reality it is
the chemical potential of the corresponding components that drives the biochemi-
cal receptors responsible for these senses. In addition to chemical reactions, diffu-
sion and evaporation are also driven by chemical potential (not concentration)
differences. On a hot and humid summer day, sweating does not cool you down
because there are no chemical potential differences to drive evaporation, despite
the large concentration difference for water between wet skin and air.

Using the newly defined derivative of Eq. 4.4, we can now write a complete dif-
ferential relationship for the energy as a function of entropy, volume and number
of moles, U=U(S,V,N):

dU =TdS — PdV +udN (4.5)

More generally, for a multicomponent system, one needs n+2 variables to fully
characterize the state of a system. When the function of interest is the total energy
U, these variables can be selected to be the total entropy, S, volume, VV and amount
of moles for each component present, {N}=N_,N,,...N :

dU="TdS—PdV + Y dN, (4.6)

i=1

The chemical potential p; of a component in a mixture is defined from a direct
extension of Eq. 4.4,
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4 Chapter 4. Fundamental Equations

b= (47)
aNi SV.N ..
T
In this equation, N, ; indicates that the number of moles of all components other
than 7 are kept constant; more explicitly, Ny,N;,...N;_1,N;,1,... N,, are constant while
N; varies. Because the chemical potential definition implies an open system to
which a component is added, its value depends on the reference state for energy
for the corresponding component and thus is not directly measurable, unlike the
first two derivatives of Eq. 4.6, temperature and pressure.

Eq. 4.6 is the single most important equation of this book and is known as the
fundamental equation of thermodynamics (abbreviated “FE”). It links the key quan-
tities of the First and Second Laws and provides the starting point for understand-
ing equilibrium and stability as well as for deriving thermodynamic relations. S, V
and {N}, the variables in which the function U is expressed in this representation,
are all extensive, proportional to system size (mass). The first derivatives, T, P and
w's are all intensive, independent of system size. An equivalent representation of
the entropy S as a function S(U,V,Ny,N,,...N,) can be obtained by rearrangement
of the terms of Eq. 4.6:

1 P U
ds = ~du+—dv-3 ian (4.8)
T T i=1 '
This representation of the fundamental equation is used in statistical mechanics.
Example 4.1

The fundamental equation for a pure substance is

g_auv_bN’
N UV

where a and b are positive constants. Obtain the equation of state, P as a function
of V and T, for this material.

Starting from the FE in the entropy representation (Eq. 4.8), we obtain the pres-
sure and temperature as:

1 (oS aV bN? P (oS aU bN? .
—=| | = and —=|Z2| =224 (1)
T \oU),, N UV T \oVv),, N UV

Taking the ratio of the two expressions in (i),

* Adapted from Problem 2.3-5 in Callen, H. B, Thermodynamics and Introduction to Thermo-
statistics, 2r Ed., Wiley (1985).
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4.1 Thermodynamic Calculus 5

au bN®  aU’V’+bN'

P/T 2 2 U
/T _p_ N_Uv: _ NOVE___ = — y=py (ii)
1/T ﬂ+bN3 aU’V*+bN* V

N U NUYV

substituting (ii) into (i),

P aPV bN’ b
LA 3:aPz+—3:>P2(z3—az4T)=bT =
T N PV PK
o [ BT
3 4
Viav'T

4.2 Manipulation of Thermodynamic Derivatives

Deriving relationships between thermodynamic derivatives is the key objective of
the present chapter. Manipulations of thermodynamic derivatives can seem quite
daunting at times, but can be accomplished systematically with a small number of
relatively simple mathematical tools. Thermodynamic functions, after all, are
mathematical objects that are subject to the same rules of multivariable calculus as
any other functions, even if we frequently do not have explicit, closed-form ex-
pressions for them in terms of their independent variables.

In the following, we will consider X, Vy, z, and W to be mathematical objects
with well-behaved functional relationships between them. We will also assume
that there are two independent variables in this set and that any two of X, y, z, and
W can serve as the independent variables. This assumption is made for simplicity
and without loss of generality. The following general mathematical relationships
are often useful for manipulating derivatives of functions of many variables - in
general - and thermodynamic functions in particular:

Inversion

0x 1
ox\___ 1 49
(ayl (9y /0x)_ )

This relationship is for the underlying functions rather than simple algebraic in-
version; X(Vy,z) and y(Xx,z) that are being differentiated on the two sides of Eq.
4.9 are expressed in terms of different variables (see Example 4.2 for an illustra-
tion of this concept).
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6 Chapter 4. Fundamental Equations

— || = = = | — || — (4.10)
0x )|\ 9V ) , 0x9y ay )| dx v,
In other words, mixed second derivatives are independent of the order in which

they are taken. This property applied to thermodynamic functions leads to equali-
ties between derivatives known as “Maxwell’s relations.”

(axJ (ax] {BWJ (ax/aw)z
—| === = —= (4.11)
ay Z ow z ay Z inva;;sion (ay/aw)z

rule

In Eq. 4.11 we have changed the independent variables from Xx(y,z) in the left-
hand-side to x(w,z) and y(w,z) in the right-hand-side.

Commutation

Chain rule

Triple-product rule (also known as XYZ-1 rule)

This relationship links three “cyclically permuted” derivatives:

x|y [z} _ 4 (4.12)
ayzé)zxaxy

Here, the three functions being differentiated, X(y,2), y(X,z),and z(x,Vy) express
the same underlying relationship in terms of different variables. To prove this
equality, let us consider the differential form of the function X =X(y,2):

dxz[a—xJ dy+(a—x] dz
Y ) 0z y

at constant .x; this expression becomes:

d 0
[%]Z dy‘x +[a—)zc)y dz‘x =0

Now let us obtain the derivative a/az) of this relationship:
X
ox | [0y | fox) _ _ [9x|[9y]| _ [9x] _
ay ) 9z 0z ay ) {9z 0z
z x vy z x Yy
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4.2 Manipulation of Thermodynamic Derivatives 7
dy ) 9z ) (dx y

Demonstrate how the inversion, commutation, chain and triple-product rules ap-
ply to the functions:

,yZ
x(vy,z)= 7 ; W=Xxz (variable transformation for the chain rule)

Example 4.2

For the function X in the original representation, x = x(y,z):
(ax/ay)z =2y/z

To test the inversion rule, we obtain the function in the representation
vy=y(x,z):

2

x=L o y=xz = y:ir\/; = [3_yj :J_r£

zZ

Now we need to eliminate x :

Jz Jz z 1 [ay) 1

(9x/3y),

:i —_—
0x

2x 2fyt/z :E:(ax/ay)z

For the commutation rule (independence on the order of differentiation), we have

Ix |_9f2y| _9of ¥y |_ %
oz | 9zl z y_ay z z_ z

For the chain rule, the new variable is defined as w=XxZz. Then:

X=K:>(ax/8w) =1
z z z

1
t

° 2

w=xz=yzzz/:>y=i\/gz>(ay/aw)

2

So that

(aX/aW)Z: 1/z :Z_y
(dy/ow) x172dw 2

:(ax/ay)Z
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8 Chapter 4. Fundamental Equations

For the triple-product rule we obtain:

Y [ox] _

X > [ayj 2y/z

yeslxz o] ca¥x Yy | (ax) (3y) (92) __2yy 2
B azx_zz 2z ayzazxaxy z 2zy?
X 0X y x* vy

One could have substituted variables other than y and z in the expressions for the
three “cyclic” derivatives with identical results.

4.3 Euler’s Theorem for Homogeneous Functions

Thermodynamic functions and derivatives have special properties resulting from
the fact that they are either extensive (proportional to the size of the system) or
intensive (independent of the size of the system). Mathematically, functions that
satisfy the relationship

f(Ax) = Af(x) forany x

are called homogeneous of degree one. Functions can be homogeneous of degree
one with respect to some, but not all the variables - for example, a function that is
homogeneous of degree one with respect to variables X1, X, ..., X; and homogenous
of degree zero with respect to variables VY, VY, ..., y; has the property:

SOX e AXY, ) = M XY Y)

(4.13)
for any xl,...xl.,yl,...yj

Extensive thermodynamic functions are homogeneous of degree one with respect
to their extensive variables, and homogeneous of degree zero with respect to their
intensive variables.

Euler’s theorem for homogeneous functions provides a link between such func-
tions and their derivatives, as follows:

_ LY of oS
SxpX0Yy,) = Xl[ax J+x2( )+"'+X’{axi] (4.14)

1 9x,

The proof of this theorem is as follows.
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4.3 Euler’s Theorem for Homogeneous Functions 9

A X, AX, Y, ) A (XY, )]

o = o =[x, XY,
_ 0 f (Ax ... AX,,V,,...) O(AX,) . 0o f (Ax ... Xy, ,...) O(AX,) _
(rx,) n (rx) N
_ f(x ,...xi,yl,...)x L. df(x ,...xl.,yl,...)x
0X 1 X, ’

1

Application of Euler’s theorem to U(S,V,N,N,,...,N,), a homogeneous function of
degree one with respect to all its variables, gives:

S VAN} 4 s{ny =l N; SVN i

n
U=TS—PV+Y N, (4.15)

i=1

This Euler-integrated form of the fundamental equation is sometimes confusing, as
it superficially appears to suggest that U is a function of twice as many variables as
previously (T and S, P and V, pu; and N;). This is incorrect; despite appearances to
the contrary, the same variable set as before, (S,V,Ny,N,, ...,N,)), is being used, with
temperature, pressure and chemical potentials that appear in the equation also
being functions of the same variables: T(S,V,N4,N,,...,N,), P(S,V,N{,N,,...,N,), and
1;(S,V,Ny,Ny,...,N,).

4.4 Legendre Transformations

Even though it is possible in principle to control the variables (S,V,N) experimen-
tally, it is much more common to perform experiments under constant-tempera-
ture or constant-pressure conditions, rather than at constant volume or entropy.
For example, constant-temperature conditions are closely approximated when a
system is immersed in a temperature-controlled bath. Constant-pressure condi-
tions are imposed when a system is open to the atmosphere. Variables such as T
and P appear as the first derivatives of the fundamental equation U(S,V,N). Unfor-
tunately, while it is certainly possible to obtain functions such as U(T,P,N), the
information content of such functions is not equivalent to that of the fundamental
equation U(S,V,N) - this is because of the integration constants that will need to
be introduced if one wants to go from U(T,P,N) to U(S,V,N), as illustrated in Ex-
ample 4.3.
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10 Chapter 4. Fundamental Equations

In Chapter 2, we have already introduced an additional thermodynamic func-
tion, the enthalpy H = U + PV. Here, we will show that this and other similar “de-
rived” thermodynamic functions are more than just convenient combinations of
terms. They represent fundamental equations that play the same key role in ther-
modynamics as the energy U, but are expressed in variables other than (S,V,N).

In mathematical terms, for a function f(x) of a single variable X, we would
like to obtain a new function g(&), with the same information content as the origi-
nal function, but expressed in a new variable § :df/ dx, the first derivative of the
original function. Equivalence of information content implies that the original
function can be recovered from the transformed one without any ambiguity in the
form of integration constants. It turns out that this can be done through a mathe-
matical operation known as a Legendre transformation. For a function of one vari-
able, the transformed function is obtained as g (&) :f— x€, which has the following
properties:

df =&dx

dg= df —xd&-Edx=-xdg (4.16)

In the new function (referred to as the “transform” of the original function), the
role of variables and derivatives has been exchanged: the derivative of the original
function is the variable of the new function and the variable of the original function
is minus the derivative of the transform. One can recover the original function by
simply applying the Legendre transformation one more time:

dg=-xdg
f=g+xt

(4.17)

Example 4.3

Consider the function:

fx)=x%+2

Construct the function f(w) and show that it cannot be used to fully determine
f(x). Also obtain the Legendre transform of this function, g(w) and show how it
can be used to reconstruct the original function f(x).

The derivative of f(x) is:

_df
S=ax

The function f(&) can be obtained by substituting x =& /2 in f(x):

=2x
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4.4 Legendre Transformations 11

2
f&== (0
Given f(&), we can attempt to determine f(x) from:
dx 1

F:E» _-[&,df j+2\/7_i\/j+c = f:(x—c)2+2 (ii)

An unknown integration constant c appears in expression (ii), so we have shown
that f(x) cannot be fully recovered from f(E))

The Legendre transform g(&) of f(x) is:

Bagt e
)= f-Xe=242-28 = gR)=-=+ (i)
From Eq. 4.17, the variable X can be obtained from (iii) from differentiation:

d

g 2

Now the function f(x) can be obtained from g(&) using Eq. 4.17 again:
frgrgefezueta o faxte

Example 4.4

Consider the functionf(x) = x3+1 in the interval [-1,1]. Construct its first Legen-
dre transformation g(§) and plot f (x) and g(&), marking the points correspond-
ing to x=-0.7, x=0, and x=0.7 on the graph of g(&).

Using the definition of Legendre transforms:

df§:>§3x :>x+\/E

- \/7 §3/2 1_(32’3/2 §3/2 »
gi&)=f-xt= [—j +1% § + 3=>g(§) +3\5

The Legendre transform of g (&) is:
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12 Chapter 4. Fundamental Equations

g—&i—‘g = 123&—\7;+1i Q\E: ii/gg+1 = [i\/%] +1 = x°+1= f(x)

Plots of the original and transformed functions are shown in Fig. 4.1. Arrows mark
the three points of interest (note that £ =32, so the £ coordinate corresponding to
x=10.7is £=3-0.72=1.47.

The transform is multivalued - two values of the function g (&) exist for any given
€. This is the price we have to pay for ensuring that the reverse transform is
unique. In addition, the transformed function has a “cusp” at =0, with a discon-
tinuous first derivative. Multivalued functions arise naturally in thermodynamics
when a system can exist in multiple phases; cusps are also present in thermody-
namic functions for systems with multiple phases.

2 T T T 3 T T
2 - -
=0 S—x=07
% 1t {1 o 1 .
— SV =
/X——O7
0- -
0 1 1 1 _1 L 1
-1 -0.5 0 0.5 1 0 1 3
X 3

Figure 4.1 A one-dimensional function and its transform.

For functions of many variables, the Legendre transform procedure can be applied
sequentially, giving the first, second and higher-order transforms. Formally, we
consider a general function of I variables, as a basis function y(o), where “basis”
means simply the starting point of the transform:

(0)
YU XX

X)) (4.18)

The first and second derivatives of the basis function are defined as:
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4.4 Legendre Transformations 13

ay(o) azy(o) a ay(o)
=y = L and Yy =_—2—=_—| L 4.19
g’ Yi [ ox, Yy 0x.0x. 0dx || dx; ( )
! / T T
Xjti)
Thus, the differential form of y(o) is:
dym =8 F 52X, + o § X+ & X T 6 (4.20)

The k-th transform of y(o) is denoted as y(k) and is obtained from:

y(k)(glﬂgzi'";E_;kixk+1f"'x1) = y[O) - xlgl - Xz&z -t = XkE.:k (421)

The k-th transform is a function of a new set of variables, @1'&2""'E-‘k'xkﬂ""xl)'
Its differential form is

dy" = - xdg, - xdE, — - - x,dE, + &, dx,  + -+ EdX, (422)

A common basis function for thermodynamics is the fundamental equation in
the energy representation, U(S,V,N,N,,...,N,). Additional thermodynamic func-
tions, such as H, are simply transforms of the fundamental equation U that pre-
serve its information content. Note that different Legendre transforms result if the
order of variables of the original function is changed, for instance to
U(V,S,Ny,Ny,...,N,).

Fundamental equation: y(o) =U(S,V,N,,N,,--,N )
n (4.5)
dU=TdS—PdV + Y pdN,
i=1
The first Legendre transformation of U(S,V,Nl,Nz,---,Nn) gives a new thermo-
dynamic function, the Helmholtz free energy A:

Fundamental equation: y(l) = A(T,V,N,,N,,--,N )
. (4.23)
A=U-TS ; dA=-SdT-PdV+y udN,

i=1

The second transform of U, gives another fundamental equation, the Gibbs free
energy G, named after American scientist Josiah Willard Gibbs (1839-1903):

Fundamental equation: y(z) = G(T,P,N,,N,,-+,N)

n (4.24)
G=U-TS+PV=A+PV ; dG=—-SdT+VdP+ Y udN,

i=1
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Table 4.1 Fundamental equations (thermodynamic potential functions) for one-component systems.

Function Internal energy U Helmholtz energy A Enthalpy H Gibbs free energy G
Variables S VN T VN S PN T PN
Differential dU=TdS - PdV +udN dA=-5dT - PdV +udN dH =TdS+VdP+udN dG=-5dT +VdP+pudN
Integral U=TS—-PV+uN A=-PV+uN H=TS+uN G=uN
r=| Y] po (U] g [ p_ |4 r=| |y B A I
First de- dS V.N v SN oT V.N v TN ds PN P SN T PN op T,N
rivatives oU A oH oG
v “law v o), e
sV TV s.p TP
Asecond |9V _fOT) _ T - [o°A) _fos| _NC, fo'H) _for) _ T  [JG) _fo5) _NC,
derivative 952 - aS VN NC, JT? - oT N T 952 " oS PN NC, T? . oT PN T
Maxwell’s [or) _[or B L IR A v _for 95| v
rule aS VN aV SN oT . aV N aS PN oP SN oP N oT PN




4.4 Legendre Transformations 15

Reordering the variables to U(S,V,N ,N,,---,N ) gives the enthalpy H, first in-
troduced in deriving First Law balances for open systems as the first Legendre
transform y(l):

Fundamental equation: y(l) = H(S,P,N,,N,,--,N )
n (4.25)
H=U+PV ; dH=TdS+VdP+ Y dN,
i=1

The Legendre transforms of U are also known as thermodynamic potentials.
Table 4.1 (p. 14) summarizes the information on variables and derivatives for the
four thermodynamic potentials we have discussed thus far, for the case of a one-
component system for simplicity. The table also lists a second derivative for each
transform and an example Maxwell’s relationship between second derivatives.

The Euler-integrated form of each of the fundamental equations expresses
them as sum of terms, each term being an extensive variable of the transform mul-
tiplied by the corresponding derivative. The results are summarized in Table 4.1
and are consistent with the Legendre transformations above. For example, for the
Gibbs free energy G,

G = UN = U-TS+PV = H-TS = A+PV (4.26)

An important consequence of the integral relationship for G in the special case of a
one-component system is that the molar Gibbs free energy is, in this case, equal to
the chemical potential:

for one-component systemsonly: ¢ = U (4.27)

Additional transformations, not listed in the table, are possible as well. For ex-
ample, one could order the variables as U(Nl,NZ,n-,Nn,S,V) and perform a single
transform to obtain a function of (Hl'NZ""'N,,'S'V) . The resulting function is also
a valid fundamental equation, even if it is not frequently used in practice.

The final comment here is that the last transform, y('”z), yields a function of

only intensive variables, T, P and all the chemical potentials. By Euler integration
we obtain that the resulting “function” is identically zero, a result known as the
Gibbs-Duhem relationship:

~SdT+VdP-Y Ndu, =0 (4.28)

i=1
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4.5 Derivative Relationships

As already stated, two key objectives of classical thermodynamics are to obtain
relationships between properties, and to develop techniques to measure them. Ob-
taining thermodynamic relationships helps bring forward “hidden” connections
between seemingly unrelated quantities and facilitates the measurement and vali-
dation of physical property data.

The Legendre transformation facilitates developing relationships between
thermodynamic derivatives. For example, the following relationships exist be-
tween second derivatives of a transform and its basis function:

1
- _
Y= (4.29)

11
e
— Z1li P
R (4.30)
11

(O)y[O)
1 — 40 _ A1 J1j ;o
Vi =V ) Ij#1 (4.31)
11
For proofs of these relationships, as well as more complex general relation-
ships between derivatives of the k-th transform and those of the basis function, see
Beegle, Modell and Reid, AIChE J., 20: 1194-200 (1974) and Kumar and Reid, AIChE

J.,32:1224-6 (1986).

For pure components, a major simplification of thermodynamic relationships
is possible relative to the general multicomponent case, because composition is
not an independent variable. Extensive properties can then be normalized by the
amount of mass (moles) in a system to obtain intensive properties. Thermodynam-
ic derivatives at constant number of moles can be taken either on a total or on a
molar basis, for example:

B3, e
os ), \aws) )y, los),

N was eliminated in the last derivative of this expression because intensive prop-
erties do not depend on the size of the system, so that N is no longer a relevant
constraint. The differential forms of the fundamental equations in one-component
systems for the intensive thermodynamic functions U, 4, G, and H, are as follows:

9/24/15 version 16



4.5 Derivatives in Terms of Measurable Properties 17

dU=TdS—-PdV

dA=—-SdT - PdV

=7 = (4.33)
dH=TdS+VdP
dG=—SdT +VdpP

First derivatives of these functions with respect to their natural variables are
obtained directly, either from Table 4.1 or from Eqs. 4.33. An example of such a
first derivative is given above in Eq. 4.32 - temperature is clearly an experimental-
ly measurable quantity. Other examples include:

B, [
v ), v ), op ), \op),

Some first derivatives of Fundamental Equations with respect to natural varia-
bles cannot be measured directly:

(8—4] :[a—g] :—.5 and [a_U] =n (435)
JaT ), \oT ), oN ),

First derivatives of Fundamental Equations with respect to “unnatural” varia-
bles or under other constraints can be obtained from the differential expressions
of Eq. 4.33. For example, to obtain the volume derivative of the energy at constant
temperature in terms of measurable properties, we start from:

dU = TdS—PdV

We now take the partial derivative (d/dV),., followed by Maxwell’s rule on 4 to

obtain:
(G_QJ _ T(a_g] _p- T(a_PJ _p (4.36)
1% r oV r oT v

Second derivatives of fundamental equations with respect to their natural var-
iables are important from a theoretical and experimental viewpoint. For example,
differentiating A and G twice with respect to temperature, we obtain two im-
portant experimentally measurable quantities, the heat capacities defined in Chap-

ter 3:
2 C
(B_A] _ (a_SJ _ 1(a_u] _ G (4.37)
or*), \or), T(aT), T
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18 Chapter 4. Fundamental Equations

2 c
(B_%J _ _(3_5) _ _l[a_ﬂ) __=r (4.38)
or2 )~ \or), rlor), T

The other two second derivatives of G with respect to its natural variables are
also important experimentally measurable quantities. The cross derivative with
respect to temperature and pressure is:

2
9°G _ 9 |[dL _ (¥ = o,V (4.39)
dToP  OT\\ 9P ), oT
P P
This derivative is proportional to the coefficient of thermal expansion, defined as:
o,=(V/dT), /V (4.40)

The second derivative with respect to pressure is:

2
(%] {%] ——x,V (4.41)
T T

This derivative is proportional to the isothermal compressibility, which is defined
as:

KT E_(aZ/ap)T /K (442)

Mixed second derivatives of fundamental equations with respect to their natu-
ral variables can be written in two equivalent ways, using the commutation prop-
erty (Maxwell’s relationships):

Gl _ (9P} _ [oT (4.43)
9SaV s ), v ) '
oA _ (o) _ |95 (4.44)
oT oV T), v ). '
H _ (9T) _(3L (4.45)
9SoP oP ), 9s), '
6 _ _[o5) _ [ (4.46)
T oP ). \dT), '

It is clear from the last three expressions that derivatives of the entropy S with re-
spect to volume or pressure are experimentally measurable, even though the abso-
lute value of entropy itself is not directly obtainable in classical thermodynamics.
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Other derivatives can be obtained using the tools described in § 4.2. For exam-
ple, the Joule-Thompson coefficient, (0T/dP)y is the rate of temperature change
with pressure when a fluid flows across a throttling valve, as can be confirmed
from a differential First Law balance in an open system at steady state with dQ =
dW=0 (see Eq. 2.18, p. 18). This coefficient can be expressed in terms of equation-
of-state derivatives and heat capacities by first invoking the triple-product rule:

aT) (oH| (P _ | _ [oT)| __(9H/9P),
op )\ or )\ oH ), o), (0H/IT),

The denominator is simply Cp; the numerator can be obtained from the differential

form of H,
dH=TdS+VdP = oH =T 9 +V=-T 4 +V
- - oP r oP r oT »

(B_T] _ L T(a_zj Ly @a7)
o), C,\ \or),

Example 4.5 Differential expressions for U

The final result is:

Obtain differential expressions for U=U (T,V) and U=U (T,P) in terms of experi-
mentally measurable properties. Note that these expressions are not fundamental
equations because the natural variables of U are S and V.

We seek to construct expressions of the form:

dL_I:[a—Q] dT+£a—Q) dv (1)

or ), \av ),

dU = Y dT + 9y dpP (ii)
ar ), oP ).

The temperature derivative (dU/dT)y =Cy, and the volume derivative (dU/dV)r,
have been obtained in Eq. 4.36, so the desired expression for U=U(T,V) is:

oP
dU=C,dT+ T[a—TjV—P dv (iii)
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20 Chapter 4. Fundamental Equations

For the derivatives needed for expression (ii), we start again from the fundamental
equation for U in terms of its natural variables, dU =TdS - PdV . Differentiating with
respect to T at constant P gives:

#)-{2)-f2
or ), \or), "lor),

The temperature dependence of the entropy at constant pressure, (dS /dT)p, can
be obtained by differentiating dH =TdS + VdP:

() e
oT ), oT ),

After substituting the result into (iv), we get:

3<%

The pressure derivative needed for (ii) is:

(318 2) 243
o). \op) “\ap) — "\or), "\op)

We used Maxwell’s relationship on G to get rid of S. Substituting (v) and (vi) into
(ii) we finally obtain:

du= CP—P[a—Z] dT - T(a—ZJ +P£a—z) dpP (vii)
T ), ar ), \or ),

One observation we can make here is that the functional forms of U in “unnatural”
variables are more complex than the comparable expressions in its “natural” vari-
ables. This is an additional disadvantage - beyond the loss of information content -
discouraging the use of functional forms such as U=U(T,V) and U=U(T,P).

Example 4.6 Difference between heat capacities

Calculate the difference between the heat capacities at constant pressure and con-
stant volume, Cp-Cy, for a general thermodynamic system, in terms of P, V, T and
their mutual derivatives.

We use as starting point expression (iii) in Example 4.5:

dU=C,dT+| T Pl _p dv
or ),

9/24/15 version



4.5 Derivatives in Terms of Measurable Properties 21

Differentiating with respect to T at constant P and setting the result equal to ex-
pression (v) of Example 4.5, we obtain:

3, 2] oA -
aT p  from (iii) aT 1% aT p from (v) aT P

P\ oV
R
P T ),\ 9T ),

For ideal gases, one can simplify this relationship considerably:

(0P/dT),=R/V and (3V/dT),=R/P = C,-C,=TR*/(PY)=R

Thus, the difference in heat capacities at constant pressure and constant volume
for ideal gases is simply the ideal-gas constant R, as already derived in § 2.4.

9/24/15 version



