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PHASE TRANSITIONS1 

 

Up to now, we have considered systems with no interactions (ideal gases), or homogeneous 
systems (liquids) that can be described using the radial distribution function formalism.  Nothing 
up to now has indicated that it is possible to have phase transitions, in other words coexistence 
between phases of different densities and compositions.  From an engineering standpoint, phase 
equilibria are extremely important since they form the basis for most separations.  In the 
following, we will attempt to clarify the microscopic basis for phase transitions.  We will do this 
by introducing a very simple model for interactions between parts of a system, the Ising model. 

Ising model 

The Ising model was initially proposed in order to describe ferromagnetism, the presence of 
spontaneous magnetization in metals such as Fe or Ni, below a critical temperature (the Curie 
point).  In the terminology of magnetism, the Ising model is described as follows:  Consider a 
lattice of magnetic dipoles (cubic in three dimensions), as illustrated in the figure below. 

 

Each dipole has magnitude m, and can point up or down.  In the presence of an external magnetic 
field of magnitude H, the energy of a microstate ν is given by 
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where the first term represents the interaction between the spins and the external field, with 
si = ±1, corresponding to the spin pointing up or down.  The second term represents the 
interactions among spins.  J is a positive constant, so that configurations with neighboring spins  
aligned are favored.  Only interactions between immediate (nearest) neighbors are present.  The 
partition function for this model can be immediately obtained as 

                                                 
    1  Material in this section is partly based on Chapter 5 of Chandler 
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By a change of names the Ising model can be made to simulate systems other than a ferromagnet.  
Of particular interest is the so-called "lattice gas" system.  A lattice gas is a collection of atoms 
whose positions can take only discrete values.  Each lattice site can be occupied by at most one 
atom.  For example, the lattice gas configuration corresponding to the schematic of the magnetic 
Ising model on the previous page is: 

 

The circles correspond to atoms, and blank spaces in the lattice to absence of atoms.  The 
potential of the system is an attractive short-range interaction between nearest neighbors 
(strength is proportional to J of equation 1).  What is the analog of the external field H?  It turns 
out that H plays the role of the chemical potential of the gas.  The canonical partition function for 
the ferromagnetic model (equation 2) is then the grand canonical partition function for the lattice 
gas model.  The two-dimensional lattice gas model is physically relevant for the description of 
adsorption. 

Physically, we expect that a model such as the Ising model might show "spontaneous 
magnitization" in the absence of an external field at sufficiently low temperatures, since alignment 
of nearest spins is energetically favored.  Since, in the absence of an external field, the up and 
down directions are equivalent, the spontaneous magnetization will be doubly degenerate, with an 
"up" phase and a "down" phase.  In the terminology of the lattice gas, there should be a dense 
(liquid) phase and a dilute (gas) phase. 

In the following, we will examine the behavior of the Ising model with respect to phase transitions, 
in one- two- or three- dimensions.  As we will show, dimensionality plays an extremely important 
role in phase transitions. 

One-dimensional Ising model 

The partition function Q of the one-dimensional Ising model can be evaluated with relative ease.  
Consider a one-dimensional system as follows 
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The line connecting cell 1 and N-1 implies that the system is under “periodic” boundary 
conditions so that there are no boundaries to the system, even though it is finite.  The partition 
function is 
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where it is implied that N+1≡1 to satisfy the periodic boundary conditions.  Now consider the 
matrix 
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Then each term in the partition function can be expressed as  
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where we have used that s q s s q s s q q si i i⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅+ + + +i
T

i
T

i
T

1 1 2 2 .  The final result can be 
expressed as the trace (sum of diagonal elements) of the N-th power of the matrix q, which is 
best found by diagonalizing the matrix: 
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Eigenvalues of the 2x2 matrix, q, are easily found: 
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Since , at the limit of large N, only the largest eigenvalue contribures to the partition 
function: 

λ λ+ >
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ln lnQ N= +λ  (5) 

For H=0, we obtain from (5), 
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The average magnetization per spin is given by  
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Since sinh(0)=0, <s1>=0 when H=0, so that there is no spontaneous magnetization and no phase 
transition. 

Two-dimensional Ising model 

The exact solution, by Lars Onsager in the 1940's, of the two-dimensional Ising model is one of 
the greatest achievements of statistical mechanics.  This is the only non-trivial model with a 
phase transition that can be solved exactly.  The partition function (at zero field) is (“short-cut” 
proof takes about 20 typeset pages) 
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At all temperatures below Tc(2-D) = 2.269J/kB  there are two symmetric non-zero solutions for 
the average magnetization <si> at zero field, H=0.  The critical temperature Tc is the solution to 
the equation sinh(2J/kBTc) = 1.  This can be shown by a differentiation of the full partition function 
in a manner similar to the one we used for the one-dimensional system, but this is too tedious to 
perform here.  This simple system shows spontaneous symmetry breaking and a phase transition. 

An important characteristic of the partition function for the two-dimensional Ising model is that the 
associated free energy is nonanalytic, that is, cannot be locally approximated by any polynomial of 
integer exponents.  It turns out that this has profound implications about the behavior of the system 
at the vicinity of critical points that are universal in character.  No approximate equation (e.g. van 
der Waals equation of state, or any other conceivable equation that is analytic) can reproduce this 
non-analytic behavior. 

What is the reason that a model that undergoes a phase transition in two dimensions no longer does 
so in one dimension?  The reasons are related to the energy cost of creating an interface in the 
system.  For the one-dimensional Ising model, one of the two states of lowest energy is 
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 ↑   ↑   ↑   ↑ ⋅⋅⋅  ↑   ↑   ↑  ⋅⋅⋅   ↑   ↑  ⋅⋅⋅ 
 1   2   3   4     N/2               N   1 

and has an energy of ─NJ and a net magnetization per particle of m.  This is also the most 
ordered state.  The disordered state 

 ↑   ↑   ↑   ↑ ⋅⋅⋅  ↑   ↓   ↓  ⋅⋅⋅   ↓   ↑  ⋅⋅⋅ 
 1   2   3   4     N/2               N   1 

with magnetization zero has energy (─N+2)J, since we have introduced 2 unfavorable 
interactions.  This small increase in energy, of the order of 1 part in N, is insufficient to stabilize 
the ordered state at any finite temperature.  Therefore, at all temperatures, the spontaneous 
magnetization is zero.  Actually, this conclusion is very general.  It can be shown that no one-
dimensional thermodynamic system with finite-range potentials can have a phase transition at a 
finite temperature. 

In a two dimensional system, however, the excitation energy to a disordered state is much greater.  
For example, the energy for the configuration 

 ⋅⋅⋅ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ⋅⋅⋅ 

 ⋅⋅⋅ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ⋅⋅⋅ 

 ⋅⋅⋅ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ⋅⋅⋅ 

 ⋅⋅⋅ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ⋅⋅⋅ 
is N1/2 parts out of N higher than the energy of the perfectly ordered state.  This difference turns 
out to be sufficient to stabilize the ordered state at sufficiently low temperatures. 

Three-dimensional Ising model 

The three dimensional Ising model has not been solved exactly to date.  Simulations have 
established that the critical temperature in the three-dimensional Ising model is approximately  

Tc (3-D) ≅  4.4J/kB 

The range of the two-phase coexistence region increases relative to the two-dimensional case 
because the relative cost of creating an interface in the system is now still greater. 

Broken symmetry 

One feature of the phase transition of the Ising model should cause concern to all but the most 
casual observer.  In the absence of a magnetic field, the model is symmetric with regard to the up 
and down directions of the spin.  Indeed, the ground state with all spins aligned is two-fold 
degenerate since the total alignement can be either up or down.  Therefore, in the absence of an 
external field, we should expect the overall magnetization 
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to be always zero, since symmetric configurations 
with cancelling up and down spins should be 
weighted equally in the ensemble average.  
However, this is not the case below the critical 
temperature.  The transition from above the critical 
point (where the average magnetization is zero) to 
below the critical point (where the overall 
magnetization is not zero, even though there is no 
preferred spatial direction is called "broken 
symmetry".  The system "freezes" in one of the two 
possible states.  To explain this, let us consider the 
figure on the following page.  We plot the free 
energy, AM, of a system at a given magnetization, 
obtained by Boltzmann-averaging over all states 
that have a given magnetization.  Above the critical 
temperature, AM will be symmetric and the 
minimum occurs at M = 0.  At the critical 
temperature, the minimum is very flat.  Below the critical temperature, there will be two minima 
for AM, at the values of the spontaneous magnetization.  There is a large free-energy barrier that 
has to be overcome to convert the system from one state to the one with opposite magnetization.  
Which state a real macroscopic system will select is decided by random fluctuations as the 
system passes through the critical point. 

 

 Mean field theory for the Ising model 

In general, the theoretical treatment of systems undergoing phase transitions requires the use of 
approximations.  A simple approximation that has been widely used in statistical mechanics and 
thermodynamics is the so-called “mean field theory”.  In mean field theory, we focus on a given 
particle (in the case of the Ising model a spin), and assume that the role of the neighboring 
particles is to form an average (magnetic) field which acts on the particle in the center.  Although 
this might not be obvious, similar mean-field ideas are behind the large class of engineering 
equations for the properties of fluids that originated with the van der Waals equation of state.  
Let us write the energy per particle, U i  ν by decomposing the total energy: ν,
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The average field acting on a particle is < >= + < >mH mH Jz si i where z is the number of nearest 
neighbors (coordination number) in the lattice.  We now assume (and this is the basic assumtion 
in mean field theory) that we can write the thermodynamics of the system by using the average 
field <mHi> instead of the actual field mHi.  In other words, we neglect the effects of 



CHE 503 Phase Transitions 7 

correlations of the spin in question with nearby spins, as well as the effect of fluctuations in the 
local field experienced by a spin.  The canonical partition function for the system, as well as any 
average quantities can then be calculated analytically.  For example, the average magnetization per 
spin is: 
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We thus have an explicit equation in 
<si>.  For H=0, we have a non-trivial 
solution to equation (8), provided that 
βJz > 1  => kBT < Jz .  This can be seen 
in the figure to the left, in which 
tanh(βJz<si>) and <si> are plotted for βJz 
> 1 and  < 1. 

The critical temperature predicted by 
mean field theory is then 

kBTc/J = T*
c = z = 2D 

 

where D is the dimensionality (e.g. there 
are 4 nearest neighbors for the two-

dimensional Ising model.)  We can compare the results of the mean-field theory for the critical 
behavior of the Ising model with the exact results in the table below.  As can be seen from the 
table, the relative error of the mean field theory decreases with the dimensionality.  This is not 
accidental, since the main approximation in mean field theory is the neglect of fluctuations.   As 
we have seen, it is fluctuations that destroy the long-range order in one dimension, but the energy 
cost of fluctuations becomes relatively higher in higher dimensions, and thus fluctuations play a 
less important role as the dimensionality is increased.  It turns out that fluctuations play a 
negligible role for D=4 and above. 

 

 
──────────────────────────────── 

   Dimensionality 

                           1            2           3 
──────────────────────────────── 

kBTc/J (Mean Field)       2            4           6 
──────────────────────────────── 

kBTc/J (Exact)          No Tc         2.3         4.4 
──────────────────────────────── 
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