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                   IMPERFECT GASES1 
 
At the limit of low densities, all gases approach ideal-gas behavior: 
 
 P =  ρkT (1) 
 
This equation can be easily derived for a monoatomic gas in which the 
intermolecular potential can be ignored.  Physically, this means that the 
particles spend practically all their time away from each other and do 
not "feel" the presence of other particles.  Consider the canonical 
partition function of N monoatomic particles contained in a volume V at 
temperature T: 
 
         1 
 Q  =  ───── ∫⋅⋅⋅⋅∫ e-βHdp1dp2⋅⋅⋅⋅dpNdr1dr2⋅⋅⋅⋅⋅drN (2) 
       N!h3N 
 
Since H is of the form  
 
        1   N 
 H  =  ───  Σ (pxn2 + pyn2 + pzn2) + U(x1,y1,z1,....,zn) 
       2m  n=1 
 
we can immediately integrate equation (2) and obtain 
 

      1      2πmkT    3N/2 
 Q = ───  ( ─────── )      ZN (3) 
      N!       h2 
 
where ZN is the configurational integral  
 
              -UN/kT 
 ZN =  ∫ ⋅⋅⋅⋅⋅ ∫ e       dr1dr2⋅⋅⋅⋅⋅drN (4) 
 
If we can set UN=0 in the configurational integral, then ZN = VN and Q = 
qN/N! where q(V,T) = (2πmkT/h2)3/2V.   The key point is that it is q being 
of the form f(T)⋅V that leads directly to the ideal gas equation of 
state.  Although we have discussed only the case of monoatomic gases 
here, the same result holds true for polyatomic gases.  This is easily 
proved at the expense of introducing a number of angular interactions. 
 
As the density of the gas is increased, the particles are closer on the 
average, and the intermolecular potential becomes nonnegligible.  Thus, 
the configuration integral is no longer simply VN, and the ideal-gas 
equation of state is not obtained as the equation of state of the gas.  
Of course, it is well known experimentally that the real gases exhibit 
deviations from ideal gas behavior as the density is increased.  A large 
number of empirical and semi-empirical equations of state have been 
constructed to describe the deviations from the simple ideal gas law.  
The most fundamental of these, in the sense that it has the most sound 
theoretical foundation, is the so-called virial equation of state.  The 
virial equation expresses the deviations from ideal behavior as an 
                         
    1  Material in this section is based on Chapter 12 of D.A. McQuarrie, 

"Statistical Thermodynamics", Harper and Row, 1976. 
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infinite power series in ρ: 
 P 
 ──  =  ρ + B2(T)ρ2 + B3(T)ρ3 + ⋅⋅⋅⋅ (5) 
 kT 
 
The quantities B2(T), B3(T),.... are called the second, third,... virial 
coefficients, respectively, and depend only on the temperature and on the 
particular gas under consideration, but not on pressure or density.  In 
the following, we will derive expression for the virial coefficients in 
terms of the intermolecular forces.  Before going on to this, it is 
helpful to consider Table 1, which gives the contribution of the first 
few terms in the virial expansion to P/ρkT.  The data are for argon at 
25°C.  The contributions of the remaining terms are shown in parentheses.  
It can be seen that the second and thord virial coefficients alone give 
most of P/ρkT up to pressures approaching 100 atm. This is only because 
at 25°C Ar is at a reduced temperature of T/Tc≈2.0, far above the 
critical point.  At lower reduced temperatures, the contributions of 
higher order terms becomes much more significant at lower pressures.  
 
Table 1. The contribution of the first few terms in the virial 

expansion of P/ρkT for Ar at 25°C 
─────────────────────────────────────────────────────────────────────────
P(atm)  P/ρkT 
─────────────────────────────────────────────────────────────────────────     
  1 +  B2ρ + B3ρ2      +      (remainder) 
    1  1 - 0.00064 + 0.00000  + ⋅⋅⋅⋅ (+0.00000) 
   10  1 - 0.00648 + 0.00020  + ⋅⋅⋅⋅ (-0.00007) 
  100   1 - 0.06754 + 0.02127  + ⋅⋅⋅⋅ (-0.00036) 
 1000  1 - 0.38404 + 0.68788  + ⋅⋅⋅⋅ (+0.37232) 
───────────────────────────────────────────────────────────────────────── 
 
 
THE VIRIAL EQUATION OF STATE FROM THE GRAND PARTITION FUNCTION 
 
The grand partition function can be written as 
 
              ∞            µN/kT 
 Ξ(V,T,µ)  =  Σ  Q(N,V,T) e (6) 
             N=0 
 
When N = 0, the system has only one state with U=0, and so Q(N=0,V,T) = 
1.  This allows us to write equation (6) as  
 
                   ∞          µN/kT            ∞ 
 Ξ(V,T,µ)  =  1 +  Σ Q (VN ,T) e        =  1  +  Σ Q (VN ,T) λN (7) 
                  N=1                         N=1 
 

Where λ = eµ/kT, QN(V,T) = Q(N,V,T).  From the section on Legendre 
transforms, we have that  
 
 PV =  kTlnΞ  (8) 
 
From the same section, the average number of molecules in the system is: 
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          ∂lnΞ              ∂lnΞ 
 N = kT ( ──── )     =  λ ( ──── ) (9) 
           ∂µ   V,T          ∂λ   V,T 
 
Thus we have the pressure and essentially the density as functions of Ξ.  
The standard procedure to eliminate Ξ between these two quantities is to 
obtain a power series for lnΞ in some convenient parameter and then to 
eliminate this parameter between equations (8) and (9).  The most obvious 
choice for the expansion parameter is λ, since in equation (7), Ξ is 
already a power series in this parameter (which is related to our 
familiar chemical engineering fugacity).  From equation (7), expanding 
lnΞ around Ξ=1 (which corresponds to λ=0): 
 
 PV/kT = lnΞ ≈ ln1 + (∂lnΞ/∂Ξ)Ξ=1⋅(Ξ─1) + ½ (∂

2lnΞ/∂Ξ2)Ξ=1⋅(Ξ─1)
2+ ⋅⋅⋅ = 

 
     =  0  + (1/Ξ)Ξ=1 ⋅ (Ξ─1) + ½ (─1/Ξ

2)Ξ=1 ⋅ (Ξ─1)
2 = 

 
     =  1⋅(Ξ─1) ─ 1/2 ⋅ (Ξ─1)2 + ⋅⋅⋅⋅  =   
 
     =  (Q1λ + Q2λ2 + ⋅⋅⋅) ─ 1/2 ⋅(Q12λ2 + ⋅⋅⋅)  =  Q1λ + (2Q2 ─ Q12)/2 ⋅ λ2 
 (10) 
From equation (9), using the expansion in (10) : 
 
 N = ρV =  λ⋅(Q1+2λ⋅(2Q2─Q12)/2 + ⋅⋅⋅) =  Q1λ + (2Q2─Q12)λ2 + ⋅⋅⋅⋅    (11) 
 
Now, let us expand P as in equation (5), using (11) to express the 
density ρ: 
 
 PV/kT = ρV + B2(T)ρ2V + ⋅⋅⋅ = Q1λ + (2Q2─Q12)λ2 + B2(T)Q12λ2/V + ⋅⋅⋅ (12) 
 
Comparing equation (12) to equation (10), the terms of order λ2 must be 
equal: 
 
            2Q2 ─ Q12 
 B2(T) = ─ ─────────── (13) 
             2Q12/V 
 
or, in terms of the configurational integrals, Z1 = V and Z2 = 2!(V/Q1)2Q2 
 
                Z  ─ Z 2 2 1

 B2(T) = ─ ──────── (14) 
              2V 
 
We could have carried out the expansions to a higher order in λ, to 
obtain expressions for the third and higher order virial coefficients in 
terms of the corresponding configurational integrals.  The result for the 
third virial coefficient is give below without proof: 
              1 
 B3(T)  = ─  ─── ( V (Z3 ─ 3Z2Z1 + 2Z13) ─ 3(Z2 ─ Z12)2 ) 

             3V2 (15) 
 
The configurational integrals that appear in equations (14) and (15) can, 
in principle, be evaluated from information on the intermolecular forces.  
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For example, 
 

 Z2 = ∫∫e─U2/kTdr1dr2 (16) 
 
where U2 is the potential for two particles.  For monoatomic particles it 
is reasonable to assume (as we have already suggested in the 
intermolecular forces section) that U2(r1,r2) = U(r12) where r12 = |r2─r1|.  
Note that we don't have to invoke the assumption of pair-wise additivity 
yet, since the integral in equation (16) truly refers to two isolated 
particles.  Equation (14) can then be written as: 
           1                             1 

 B2(T) = ─ ── ∫∫ [e─βU(r12) ─ 1] dr1dr2 = ─ ── ∫dr1∫[e─βU(r12) ─ 1]dr12  
           2V                            2V 
 
The integration with respect to r1 will just give V.  The other 
integration can be performed by changing to spherical coordinates: 

                   ∞ 
 B2(T) = ─ 2π ∫ [e─βU(r)─1]r2 dr (17) 
              0 

Equation (17) shows that once the intermolecular potential is known, the 
second virial coefficient can be calculated as a function of temperature.  
For example, for some simple potentials: 
 
(a) the hard-sphere potential 
 
 U(r) = ∞  r < σ 
 U(r) = 0  r ≥ σ 
                   σ             2πσ3 

 B2(T) = ─ 2π ∫ (─r2) dr =  ────    {independent of temperature} (18) 

              0              3 
 
(b) the square-well potential  
 
  
 U(r) = ∞  r < σ 
 U(r) = ─ε  σ ≤ r < λσ 
 U(r) = 0  r ≥ λσ 
               

 B2(T) = b0( 1 ─ (λ3─1)(eβε─1) )   where b0 = 2πσ3/3 (the hard-sphere 
B ) 2

 (19) 
 
(c) the Lennard-Jones potential 
 
The integration for the second virial coefficient for the Lennard-Jones 
potential cannot be performed analytically. In doing this, it is 
convenient to introduce reduced parameters, namely a reduced distance r* 
= r/σ and a reduced temperature T* = kT/ε.  Using these parameters, it 
can be shown that the second virial coefficient for the Lennard-Jones 
potential is 
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                        ∞        4 

 B2*(T*) = B2(T*)/b0 = ─3 ∫ (exp{─ ──(r*─12 ─ r*─6)} ─ 1) r*2 dr* (20) 

                        0        T
*
 

 
Second virial coefficients can also be experimentally measured to within 
a few percent.  Figure 3.6-1 (from J.O. Hirschfelder, C.F. Curtiss and 
R.B. Bird, "Molecular Theory of Gases and Liquids". Wiley, NY 1954) shows 
some experimental second virial coefficients versus temperature.  From 
the figure, it would appear that the Lennard-Jones potential does an 
excellent job in reproducing the experimentally measured second virial 
coefficients of several gases.  Unfortunately, this does not mean that 
the Lennard-Jones potential is a "good" potential.  As can be seen in 
Figure 3.9-3 (op.cit.), the same good agreement between the 
experimentally measured second virial coefficients and those 
theoretically calculated can also be obtain from several other potentials 
with different forms.  The second virial coefficient is not very 
sensitive to the details of the intermolecular interactions. 
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