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STATISTICAL MECHANICAL ENSEMBLES1

MICROSCOPIC AND MACROSCOPIC VARIABLES 

The central question in Statistical Mechanics can be phrased as follows: If particles (atoms, 
molecules, electrons, nuclei, or even living cells) obey certain microscopic laws with specified 
interparticle interactions, what are the observable properties of a macroscopic system containing 
a large number of such particles? 

Examples of microscopic and macroscopic variables are given below for 1/6th mole of an n-
component monoatomic gas (≈1023 molecules) obeying classical mechanics. 

 

Microscopic variables Macroscopic variables 

3x1023  positions (x,y,z) 
3x1023  velocities (x,y,z) 

n+2 independent thermodynamic variables - 
e.g. for n=1, N,V,T 

 

PHASE SPACE 

The multidimensional space defined by the microscopic variables of a system.  In the example 
above, it would be a 6x1023-dimensional space, with independent variables 

 (rN, pN)  =   (r1,r2,r3,.....,rN;p1,p2,p3,....,pN) 

where bold symbols indicate vectors, r is the position and p the momentum (p = mu).  Momenta 
are used rather than velocities, because the classical and, especially, the quantum equations of 
change are more elegantly written in terms of momenta.  The evolution of such a system in time is 
described by Newton's laws: 
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where U is the total potential energy of the system, the gradient of which is minus the force. 

For a much simpler system, a one-dimensional harmonic oscillator, phase space is two 
dimensional, with coordinates the position and the momentum variables. 

ENSEMBLES 

An ensemble is a collection of all microstates of a system, consistent with the constraints with 
which we characterize a system macroscopically.  For example, a collection of all possible states of 

                                                 
    1 Some material in this section is derived from Chap. 3, D. Chandler, "Introduction to modern 

statistical mechanics", Oxford University Press, 1987. 
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the 1023 molecules of gas in the container of volume V with a given total energy U is a statistical 
mechanical ensemble. 

For the one-dimensional harmonic oscillator with a given energy, the phase space is a circular 
alized) position and momentum space. 

system samples a very large number of possible 

trajectory in (properly norm

ERGODIC HYPOTHESIS 

Experimental measurements on any macroscopic system are performed by observing a system 
for a finite period of time, during which the 
microstates.  In order to connect the measured properties with the properties calculated from 
statistical mechanics, we have to assume that: 

For sufficiently long times, a macroscopic system will evolve through (or will come arbitrarily 
close to) all microscopic states consistent with the macroscopic constraints we impose in order to 
control the system.  In other words, experimental measurements (performed by time averages) and 
ensemble averages are equivalent. 

The "ergodic hypothesis" is more than just a hypothesis.  It is a general property of almost all real 
systems composed of a large number of particles.  The ergodic hypothesis is equivalent to the 

does not state anything about the relative probabilities of 

postulate of classical thermodynamics that there exist stable equilibrium states fully characterized 
by n+2 independent macroscopic variables. 

Note that the ergodic hypothesis 
observing given states - it just states that all states will eventually be observed.  A general property 
F will thus obey the following rule: 

Fobserved  =     Σ       Pν               ×               Fν                 =            <F> [1] 

---------------- 
        value of property     ensemble average 

                finding the system     F in microstate ν 
             in microstate ν 

 

                 ------------------ 
                  probability of    

    ------------------    

  
     

MICROCANONICAL ENSEMBLE: CONSTANT U,V,N 

Basic Postulate of Statistical Mechanics:  For an isolated system at constant U, V and N, all 

microscopic states of a system are equally likely at thermodynamic equilibrium. 

If  Ω(N,V,U)   is  number of microstates with energy U , then the probability of microstate
late above, is  

 v, 
according to the postu

Pv  =   1/Ω (N,V,U)  [2] 

The existence of a finite number of microstates for a given energy is a concept fully justified in 
quantum mechanics.  In classical statistical mechanics, we can introduce a “density of states” by 
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ow many states one counts in equation [2], within a multiplicative constant.  In other 
words, if one doubles the volume of a container, there are twice as many states for molecular 

assuming that, say, two possible positions must be apart by more than a small distance in order to 
be counted as “different.” The (arbitrary) scales chosen to discretize positions and velocities 
determine h

positions.   

Example: Balls in a box 

Let us consider a very simple example, namely a box with 10 slots, each containing a ball that can 
be at the bottom of the slot (with ener , 
respectively.   

s on the overa

⎝
.  

As you can see, the number of microstates for even a simple system increases rapidly with the 

gy 0), or at one of two higher levels, with energies +1 and +2

 

The number of microstates for this system depend ll energy of the box.  There are:  

1 state with energy 0;   10 states with energy +1; 5510
2
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states with energy +2 and so on
⎠

energy of the system. 

Definition of Entropy 

Let us define a quantity S, such that: 

S  = kBlnΩ(N,B V,U) [3] 

where kB is a constant (to be later identified as Boltzmann's constant, kB BB A = 1.380x10-23J/K, 
ere N

 = R/N
wh A is Avogadro's Number, NA = 6.023x1023 mol-1). S has the following properties: 

. 1 S is extensive:  If we have two independent subsystems, A and B, then 

SA+B  =  kBln(ΩB A+B)  =   kBBln(ΩA⋅ΩB)  =  k B BBlnΩA + kBlnΩB BB  = SA+SB [4] 

 The reason for this is that, for independent subsystems, each microstate of system A can be 
combined with a microstate of system B to give a microstate of the combined system.  For 
mixing two fluids, we only get the above expression if we assume that the particles in the 
systems are indistinguishable.  If particles were distinguishable, additional "states" would 
be available to the combined system resulting from the possibility of exchanging the 
“labels” of particles.   Although the indistinguishability of particles is really of 

B

quantum 
mechanical origin, it was introduced ad hoc by Gibbs before the development of quantum 
mechanics, in order to make statistical-mechanical entropy an extensive property. 
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. 2 S is maximized at equilibrium:  For a system with internal constraints (e.g. internal rigid 
walls or barriers to energy transfer), the number of possible microstates is always less than 
the number of microstates after the constraints are removed.   

 S (N,V,U)  >  S (N,V,U; internal constraints) 

 To see this second property, consider the box with particles of the example above, and 
think of any constraint to the system at a given energy (say U=+2).  An example of a "constraint" 
would be to have that the first five slots have exactly 1 unit of energy.  The number of microstates 
in this case is (5x5=25), less than the 55 states available to the unconstrained system. 

In conclusion, S has the same properties as the entropy.  Statement (2) above is the microscopic 
statement of the Second Law of thermodynamics.  From 
thermodynamics, 

the Fundamental Equation of 

∑∑
μ

−+=⇒μ+−= i
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i
ii dNVdPUdSddNVPdSTdUd 1  [5] 

i TTT

mental equation (the "Entropy RepresentaThe second form of the funda tion") is the most useful for 
Statistical Mechanics. 

Since   (from equation 5)   
TkUTU

S 1ln1
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BVNVN ,, ⎠⎝ ∂⎠⎝ ∂
[6] 

The symbol β is commonly used in statistical mechanics to denote the inverse temperature. 

 Example (cont.): Balls in a box  

In the example above, we can now define the temperature of the box from equation 1.  Initially, 
as the energy increases, the temperature increases, as expected.  However, something strange 
happens to the system at energies greater than +10 - can you guess what that is?  What is the sign 
of the temperature for energies > +10? Is this physically reasonable? 
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CANONICAL ENSEMBLE:  CONSTANT N,V,T 

  

Let us first obtain the equilibrium condition for two systems, I and II, that are placed in thermal 
contact, so that they can exchange energy.  The number of microstates available to the combined 
system must be a maximum at equilibrium, since the combined system is under conditions of 
constant N, V and U discussed previously.  Mathematically, the condition for equilibrium is that 

Stotal  is maximum ⇒  δStotal = 0 ⇒ δSI + δSII = 0 ⇒ 0II
II

II
I

I
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Since the total system is isolated, δUI + δUII = 0.  Combining with the above condition, we 
obtain 

III
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∂  [7] 

In other words, systems that can exchange energy much have the same temperature at 
equilibrium. 

Now, let us assume that one of the two systems is much larger than the other, so that it effectively 
acts as a "constant-temperature bath."  The total system (small system + bath) is again considered 
under NVU conditions.    

Now consider the small system at a given microstate ν with energy Uν .  The energy of the bath is 
UB =  U - Uν .  The bath can be in any of Ω(UB)  = Ω(B U - Uν) microstates.  Since the probability of 
the total system being in any particular combination of microstates with a given total energy is the 
same, the probability of finding the small system in state ν is 

Pν  ∝  Ω (U - Uν)  =  exp (ln(Ω (U - Uν)) [8] 

We can expand lnΩ around Ω(U)  given that Uν is much smaller than U: 

( ) ( ) sorder termhigher  Ωln(Ωln)(Ωln +
∂
∂

−=−
U

UUUU νν   
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and substituting back in the expression for Pν  using ∂lnΩ/∂U = β = 1/kBT, B

Pν  ∝  exp (– βUν ) [9] 

This is a very important result.  In words, we are finding that the probability of each microstate in 
the canonical ensemble (constant N,V, T ) is proportional to the exponential of the energy divided 
by the temperature.  In order to find the absolute probability of each microstate, we need to make 
sure that the sum of all the probabilities is one.  The normalization constant for this is called the 
"canonical partition function,"  Q. 

∑ β−=
i

iUTVNQ
  smicrostate all

)exp(),,(  [10] 

The summation over microstates is performed over all energies and particle positions.  For the 
simple example of the box with particles we have been following, the partition function at a given 
inverse temperature β would be: 

Q(β) = 1 + 10exp(–β) + 55exp(–2β)  + … 

Where the first term in the summation comes from the single energy state with U = 0, the second 
from the 10 states with U = +1 and so on.  For this simple system, both volume and number of 
particles are fixed, so they do not appear in the summation - however, in the general case the 
partition function would be a function of both N and V. 

Once the partition function is defined, the probability of each microstate can now be written 
explicitly: 

Q
Uβ ν

ν
)exp(−

=P  [11] 

Therefore, in the canonical ensemble, a general property F is given by 

)exp(

)exp(

 smicrostate all

 smicrostate all
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It is possible to relate derivatives of lnQ to thermodynamic properties.  For example, 
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One can also calculate the averaged squared fluctuation of energy in the canonical ensemble: 
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VB CTkU 22)( =δ  [14] 

This is a remarkable result!  We have obtained a relationship between the thermodynamic 
parameters of a system and the size of the spontaneous fluctuations.  It is interesting to note that the 
heat capacity of the system, CV, is an extensive variable (grows linearly with the size of the 
system).  This implies that the relative magnitude of the spontaneous fluctuations grows as: 

NN
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For a macroscopic system, N = O(1023), this is a very small number: the energy of an ideal gas 
system at equilibrium with a room-temperature bath is constant to roughly 1 part in 1011.  
However, for small systems typically used in simulations, N≈100-1,000, so that typical fluctuations 
are 10%-3%.  Equation 15 is not valid near critical points, at which the heat capacity (and 
fluctuations) diverge. 

Q can be identified with a familiar thermodynamic function.  To do this, let us write 

⎟
⎟
⎠
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β−= ∑

ν
ν )exp(lnln UkQk BB  [16] 

As just shown, the relative fluctuations in energy for a macroscopic system are very small.  We can 
approximate the sum in equation 16 by summing just the dominant terms.  All of these will have 
Uν = <U>.  There are Ω(<U>) such terms (since this is the number of microstates at that U, and 
thus 

kBlnQ ≈ kB BB⋅ln(Ω (<U>) exp(–β<U>)) = kBlnΩ (<B U>) – <U>/ T = S – U / T = – A / T [17] 

This should have been expected.  In the microcanonical (const. NVU) ensemble the important 
function Ω is such that kBlnΩ = B S .   Recall that S is the function maximized at const. NVU.  In the 
canonical (NVT) ensemble, the thermodynamic function being minimized is A, or equivalently -A / 
T is maximized.  We see a similar relationship of -A / T with kBBlnQ.   
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The approximation is exact at the "thermodynamic limit" (for an infinite system).  The table below 
summarizes the connections between "classical" and "statistical" thermodynamic properties 
discussed thus far. 

 

Const. N, V and U Const. N, V, and T 

Classical  Statistical Classical  Statistical 

Entropy, S is 
maximized at equil. 

kB lnΩ = B S Helmholtz Energy, A 
is minimized at equil. 

kB lnQ = –B A / T 

 

GENERALIZED ENSEMBLES AND LEGENDRE TRANSFORMS 

 

Starting from the fundamental equation in terms of S/kBB

∑−+= i
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μ11  [18] 

First Legendre Transform:  y(1) = S/kB – B U/kBBT  = –A/kBT (B A is the Helmholtz free energy) 

 

y(0) = S/kB = lnΩ B y(1) = –A/kBT  = lnQ B

Variable Derivative Variable Derivative 

U 1/(kBT) = β B 1/(kBT) = β B –U

V P/(kBT) = βP B V P/(kBT) = βP B

N –μ/(kBT) = –βμ B N –μ/(kBT) = –βμ B

 

We then have all the relationships we need for the thermodynamic functions: 
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One can continue this with Legendre transforms of higher order.  The probabilities of microstates 
in the corresponding ensembles can be derived in a way completely analogous to the derivation for 
the canonical ensemble, involving a subsystem and bath of constant temperature.  In general, 
starting from 

 
y(0)  =  S/kB  ;       y(n)  =  y(0) - ξB

)

1X1 - ξ2X2 - ... - ξnXn [23] 

where ξi is the i-th derivative of y(0) with respect to variable Xi.  The probability of a microstate ν 
in any given ensemble is proportional to 

Pν  ∝  exp(– ξ1X1 – ξ2X2 – ... – ξnXn)   {where the ξi’s and Xi’s refer to y(0)} [24] 

with normalization factor    

(∑
ν

ξ−−ξ−ξ−=Ξ nn XXX ...exp 2211  [25] 

Ξ is the partition function for the corresponding statistical ensemble.  Using Ξ, the probability Pv is 
now equal to: 

Pv  =  exp(– ξ1X1 – ξ2X2 – ... – ξnXn) / Ξ [26] 

As for the canonical ensemble, Ξ has the property that :  

lnΞ = y(n)  =  y(0) – ξ1X1 – ξ2X2 – ... – ξnXn [27] 

Using the expression above, it easy to prove the famous "Gibbs entropy formula": 

∑
ν

νν−= PPkS B ln  [28] 

Proof: 

∑ ∑ ξ−−ξ−ξ−Ξ−= ννν nn XXXPPP ...ln(ln 2211 )  {from equation 26} 

          = – lnΞ  –  ξ1<X1> – ξ2<X2> – ⋅⋅⋅ – ξn<Xn>  =  –y(0) 

      {since all ξi's are constant in this ensemble} 

          = – S / kBB

 



ChE 503 Statistical Mechanical Ensembles 10 

APPLICATION:  GRAND CANONICAL ENSEMBLE (CONST. μ, V, T ) 

 

The probability of microstates in this ensemble is 

Pν  =  exp(–βUν+βμNν) / Ξ [29] 

where   

lnΞ  =  S/kB – B U/kBBT + μN/kBT  =  PB V/kBBT   

The derivative relationships for the Grand Canonical partition function Ξ can be obtained from a 
Legendre transform table: 

y(0) = S/kB = lnΩ B y(2) = PV/kBT  = lnΞ B

Variable Derivative Variable Derivative 

U 1/(kBT) = β B 1/(kBT) = β B –U

N –μ/(kBT) = –βμ B –βμ –N 

V P/(kBT) = βP B V P/(kBT) = βP B

 
e.g.,   
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Ξln  [30] 

Fluctuation formulae in the grand canonical ensemble are analyzed in the same fashion as in the 
canonical ensemble.  For example, 
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