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We have developed explicit- and implicit-solvent models for the flash nanoprecipitation process,
which involves rapid coprecipitation of block copolymers and solutes by changing solvent qual-
ity. The explicit-solvent model uses the dissipative particle dynamics (DPD) method and the
implicit-solvent model uses the Brownian dynamics (BD) method. Each of the two models was
parameterized to match key properties of the diblock copolymer (specifically, critical micelle
concentration, diffusion coefficient, polystyrene melt density, and polyethylene glycol radius of
gyration) and the hydrophobic solute (aqueous solubility, diffusion coefficient, and solid density).
The models were simulated in the limit of instantaneous mixing of solvent with antisolvent. Despite
the significant differences in the potentials employed in the implicit- and explicit-solvent models,
the polymer-stabilized nanoparticles formed in both sets of simulations are similar in size and
structure; however, the dynamic evolution of the two simulations is quite different. Nanoparticles
in the BD simulations have diffusion coefficients that follow Rouse behavior (D ∝ M−1), whereas
those in the DPD simulations have diffusion coefficients that are close to the values predicted
by the Stokes–Einstein relation (D ∝ R−1). As the nanoparticles become larger, the discrepancy
between diffusion coefficients grows. As a consequence, BD simulations produce increasingly
slower aggregation dynamics with respect to real time and result in an unphysical evolution of the
nanoparticle size distribution. Surface area per polymer of the stable explicit-solvent nanoparticles
agrees well with experimental values, whereas the implicit-solvent nanoparticles are stable when
the surface area per particle is roughly two to four times larger. We conclude that implicit-solvent
models may produce questionable results when simulating nonequilibrium processes in which
hydrodynamics play a critical role. © 2011 American Institute of Physics. [doi:10.1063/1.3580293]

I. INTRODUCTION

Recently, there has been a rapidly growing interest
in utilizing polymer-protected nanoparticles for drug deliv-
ery and medical imaging. Many useful drugs or imaging
agents are insoluble in the bloodstream or are cleared by the
kidneys before they can take effect.1 One solution to this prob-
lem is to use amphiphilic block copolymer micelles as “con-
tainers” to carry such molecules.2–21 The hydrophilic block
forms a corona that sterically stabilizes the particles. In or-
der to be useful, such particles must be sufficiently small
(50–400 nm in diameter) and biocompatible.4, 11, 20 One com-
mon choice for the hydrophilic block of the copolymer is
polyethylene glycol (PEG), which has been shown to in-
crease the circulation time of nanoparticles and facilitate
the release of the drug molecules encapsulated within their
cores.2, 4, 10–13, 15–17, 19, 21, 22

One of the most promising areas for nanoparticle-based
drug delivery is in chemotherapy, where traditional delivery
methods often result in widespread cell death throughout the

a)Author to whom correspondence should be addressed. Electronic address:
jspaeth@princeton.edu.

body. Tuning the nanoparticle size can lead to preferential
deposition in tumors, where the vasculature is different than
in healthy tissue.20, 23 Additionally, polymers with ligands or
receptor-specific peptide sequences bonded to the ends of the
hydrophilic blocks can also be used to facilitate localized
delivery.7, 11, 19–21 Creating polymer-protected nanoparticles in
the desired size range is nontrivial, however. In recent years,
the “flash nanoprecipitation” technique was developed to pro-
duce nanoparticles by using rapid micromixing.5, 10–13, 15, 16, 24

In this approach, block copolymer and hydrophobic solutes
are first dissolved in an organic solvent in which both are
soluble, then rapidly mixed with water at a high Reynolds
number (>1600), creating a well-mixed solution in which the
copolymer and solute are both highly supersaturated.25 As the
solutes aggregate to form clusters, the diblock copolymers
begin to assemble on their surfaces, eventually halting their
growth. Copolymer and solute concentrations, as well as the
mixing stream velocities, can be adjusted to control the parti-
cle sizes. Even though such polymer-protected nanoparticles
are now routinely synthesized, there is a lack of fundamental,
molecular-level understanding of how the formation process
proceeds. A detailed understanding of how and why some
experimentally controllable parameters (such as hydrophilic
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and hydrophobic block length and chemistry, compatibility
between solute and polymer, and solute and polymer con-
centrations) affect the outcome of the experiments is still
unavailable.

In the past few years, a number of computer simula-
tion studies of systems containing block copolymers and
nanoparticles have appeared. Some of these studies focused
on systems in which no solvent is present at all (i.e.,
nanoparticle–polymer composites),26–31 whereas others in-
vestigated the formation of polymer-protected nanoparticles
in solvent.12, 32–35 Most of the latter were either carried out
under conditions in which the polymer/solute/nanoparticle
concentrations were substantially higher than those encoun-
tered in the flash nanoprecipitation process (ppm), or they did
not employ a methodology that simulated the dynamic evo-
lution of the system. For example, Chen et al.33 used dissi-
pative particle dynamics (DPD) to study a system contain-
ing solvent, diblock copolymers, and hydrophobic solutes,
but the lowest solute and copolymer volume fractions studied
were 10% and 5%, respectively. Likewise, the lowest solute
and polymer concentrations employed by Huang et al.32, 35

were 6% and 2%, respectively. Chen et al. recently simu-
lated the flash nanoprecipitation process at near-experimental
concentrations using Brownian dynamics (BD) simulations
of an implicit-solvent model, focusing on the effects of the
solute–solute and solute–polymer interaction strengths on the
nanoparticle size and polymer distribution on their surface.12

In this work, we develop a new explicit-solvent model
and extend the implicit-solvent model of Chen et al.12, 36 for
the flash nanoprecipitation process. Implicit-solvent models
allow one to simulate larger systems for longer times than
one can access with their explicit-solvent counterparts, es-
pecially when the vast majority of the system is comprised
of solvent, as is the case here. We aim to explore whether
there exist drawbacks associated with neglecting the solvent.
Both models were parameterized based upon recent exper-
iments of Kumar et al.,13 in which flash nanoprecipitation
was used to produce polymer-stabilized nanoparticles filled
with the antifungal drug itraconazole and stabilized by the
diblock copolymer polystyrene-b-polyethylene glycol (PS10-
b-PEG68, PS block molecular weight 1000 and PEG block
molecular weight 3000). In the remainder of this paper, the
term solute refers to a hydrophobic entity that enters the
nanoparticle core during the flash nanoprecipitation process,
and the term diblock refers to a diblock copolymer that acts
as the stabilizer during the process.

Three major challenges arise when attempting to simu-
late the flash nanoprecipitation process at the experimental
conditions. First, the mixing time has been estimated to be
in the range of milliseconds.5, 10–12, 16 Second, the concentra-
tions of the solute and diblock are, respectively, ∼30 and ∼5.3
molecules per million solvent molecules (after mixing).13

Third, a typical nanoparticle formed in the process has a
diameter around 100 nm or greater and contains hundreds
of thousands of solute molecules.10–13 Hence, a simulation
containing enough material to form even a single 100 nm par-
ticle must employ a cubic domain of ∼500 nm in each direc-
tion and contain hundreds of thousands of solute and diblock
molecules and billions of solvent molecules. In addition to

being nearly computationally intractable due to its size, simu-
lating such a large system for milliseconds is clearly imprac-
tical.

In order to address these difficulties, we make simplifica-
tions to render the problem computationally tractable. First,
we use polymer and solute concentrations (and supersatura-
tion ratios) roughly ten times higher than those in the experi-
mental system; consequently, there is an upper bound on the
size of the nanoparticles that can form in our simulations, dic-
tated by the total number of polymers and solutes in the sys-
tem. Also, our simulations are performed with “infinitely fast
mixing”—the diblocks and solutes are randomly mixed prior
to being exposed to the very poor solvent conditions which
cause them to aggregate. The mixing time has a significant
impact on the kinetics of the self-assembly process5, 10–12 but
studying its effects is beyond the scope of this work. We aim
to show that, while the structure of the nanoparticles formed
in the implicit- and explicit-solvent simulations are quite sim-
ilar, the dynamical evolution of the system is quite different
between the two.

The structure of this paper is as follows. In Sec. II, we
discuss the parameterization of each of the two models and
the methods used to simulate them. In Sec. III, we present
and analyze the results of the simulations, beginning with the
dynamic evolution. Next, we compare the sizes and structures
of the nanoparticles formed. Then, we compare nanoparticle
diffusion coefficients to the theoretical values given by the
Stokes–Einstein relationship. We also compare the stability
of implicit-solvent and explicit-solvent nanoparticles, includ-
ing the average surface area occupied by a diblock in both
models. We conclude with a summary of our results and their
implications on future attempts to simulate such dynamically
evolving nonequilibrium systems.

II. MODELS AND METHODS

A. Implicit-solvent model

1. Characteristic scales

The implicit-solvent model for PS10-b-PEG68 of Chen
et al.36 serves as the foundation for our implicit-solvent
model. The characteristic length, mass, and energy are LBD

= 1.82 nm, mBD = 375 Da, and εBD/kB = 372.5 K, where kB

is the Boltzmann constant. The characteristic length was de-
termined in Ref. 36 by matching the prefactor of the radius of
gyration scaling law for the PEG model employed therein, and
the characteristic mass was set equal to the mass of a coarse-
grained PEG bead. The simulations in Ref. 36 were run at a
dimensionless temperature of T* = kBT/εBD = 0.8, represent-
ing a real temperature of T = 298 K. The intrinsic time scale,
which results from nondimensionalization of the equations of
motion, is given by the following relation:

τintrinsic,BD = L BD

√
m BD

εBD
, (1)

and is equal to 20 ps.
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2. Interaction parameters

In this section, all equations and simulation parame-
ters are given in real units, with the energies given as mul-
tiples of εBD. In the remainder of the paper, we will use
the subscript w for the solvent, s for the solute, e for PEG,
and p for PS. The diblock copolymer description within the
implicit-solvent model is identical to that developed by Chen
et al.36 The PEG portion of the diblock is represented by eight
solvophilic beads of me = 375 Da and diameter σ ee = 1.82 nm
that interact with one another via a Gaussian repulsion poten-
tial of the form

U (r ) = ε

[
exp

(−6r2

σ 2

)
+ exp

(−6r2
cut

σ 2

)]
, (2)

where ε is the energy parameter, r is the distance between
particles, and rcut is the cutoff distance. The PS portion of
the diblock is represented by five smaller, lighter beads (mp

= 200 Da and σ pp = 0.73 nm) that interact with one another
via a cut-and-shifted Lennard-Jones (LJ) 9-6 potential:

U (r ) = 27

4
ε

[(σ

r

)9
−

(σ

r

)6
−

(
σ

rcut

)9

+
(

σ

rcut

)6
]

, (3)

where σ is the LJ size parameter. The 13 beads comprising the
diblock are connected via harmonic bonds between neighbor-
ing beads:

Fbond = k
(
ri j − r0

)
, (4)

with k = 15.5 N/m and r0 = σ ij, where rij is the distance be-
tween the neighboring bonded beads and σ ij is the LJ size pa-
rameter for the two beads involved in the bond. The PEG and
PS beads also interact with one another via a cut-and-shifted
LJ 9-6 potential, except for the two beads involved in a bond,
which interact only via the bond potential. The PEG–PEG
interaction was parameterized to give the proper scaling of
the radius of gyration and second virial coefficient with chain
length for PEG chains in water, and the PS–PS interaction and
PEG–PS interactions were parameterized to match the critical
micelle concentration (CMC) and aggregation number of the
diblock in water at room temperature, as described in Ref. 36.

In Chen et al.,12 generic single-bead hydrophobic solutes
were introduced in BD simulations in order to simulate the
flash nanoprecipitation process, but the interactions were not
parameterized to specific real systems. In the present work,
we also use a single-bead description of the solute, but we
choose the size, mass, and solute–solute interaction parame-
ters to match the molecular density, molecular mass, and sol-
ubility of itraconazole in water. Itraconazole has a molecular
mass of 708 Da,13 so we set ms = 708. For the interactions
between solute beads we used a LJ 12-6 potential:

U (r ) = 4ε

[(σ

r

)12
−

(σ

r

)6
]

. (5)

Agrawal and Kofke37 determined coexisting vapor and solid
densities for this system below the triple point temperature.
The solubility of itraconazole in a 4.7% tetrahydrofuran solu-
tion (final solvent composition in flash nanoprecipitation ex-
periments) is 1.18 × 10−4 mol/m3 and the solid density is
1.38 g/ml at 278 K.13 In order to obtain such a low vapor phase

density for the LJ 12-6 fluid, the data of Ref. 37 were ex-
trapolated to lower temperatures. At a reduced temperature T*

= 0.32, setting σ = 0.96 nm, the extrapolated solid and vapor
densities are 1.40 g/ml and 1.05 × 10−4 mol/m3, respectively,
in close agreement with the experimental values for itracona-
zole. Hence, we used εss = 2.5εB D and σ ss = 0.96 nm for the
LJ 12-6 potential between solute beads.

Following Ref. 36, the interaction between the solute and
PEG beads is a purely repulsive cut-and-shifted LJ 9-6 po-
tential, and the interaction between the solute and PS beads
is a cut-and-shifted LJ 9-6 potential with a longer cutoff that
includes the attractive tail. The LJ size parameter σ for these
interactions was taken as the arithmetic mean of the corre-
sponding pure-component size parameters. The LJ energy pa-
rameter for the solute–PEG interaction was taken to be εse

= εBD, as in the work by Chen et al.12 Finally, for the LJ
energy parameter for the solute–PS interaction, we investi-
gated two different values, εsp = 1.3 εBD and εsp = 2.5 εBD,
chosen qualitatively to represent an “unfavorable” and “favor-
able” interaction, respectively. Table I summarizes the energy,
size, and cutoff parameters for the interactions in the implicit-
solvent model.

3. Simulation details

BD simulations were carried out using the LAMMPS

simulation package.38 We initialized the simulation by ran-
domly placing 1200 solute beads and 215 diblocks in a
50 × 50 × 50 nm box and then using Monte Carlo
moves to eliminate any overlaps. The concentrations of the
solute and diblock that we used (9.6 × 10−3 and 1.72
× 10−3 molecules/nm3, respectively) are both approximately
ten times larger than the experimental concentrations in the
experiments of Kumar et al.13 The force on particle i is gov-
erned by the Langevin equation

mi ai =
∑
j �=i

FC
i j − miγ v i +

√
2miγ kB T �tB Dθi , (6)

where mi is the particle’s mass, ai is the acceleration on the
particle, FC

i j is the conservative pairwise force on particle i due
to particle j, γ is the friction coefficient, vi is the particle’s
velocity, �tBD is the time step, and θ i is a Gaussian random
number with unit variance that is delta-correlated in time:

〈θi (t)〉 = 0, (7)

〈
θi (t) θi

(
t ′)〉 = δ

(
t − t ′) . (8)

The equations of motion were integrated using the velocity-
Verlet algorithm with a time step of �tBD = 60 fs and a
friction coefficient of γ = 50 ns−1 at fixed temperature of
T = 298 K.

B. Explicit-solvent model

For the explicit-solvent model, we used the DPD
method.39, 40 DPD employs soft, purely repulsive forces be-
tween particles, which are also subject to a random, impulsive
force and a frictional, dissipative force. These forces together
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TABLE I. Pairwise interaction parameters for the implicit-solvent model studied with BD simulations. Energies
are given as multiples of εB D , where εB D/kB = 372.5 K.

Pair type Potential ε/εBD σ (nm) Cutoff distance rcut (nm)

Solute–solute (ss) LJ 12-6 2.5 0.960 2(3/2)1/3σ ss

Solute–PS (sp) LJ 9-6 2.5 (favorable) 0.844 2(3/2)1/3σ sp

1.3 (unfavorable)
Solute–PEG (se) LJ 9-6 1.0 1.390 (3/2)1/3σ se

PS–PS (pp) LJ 9-6 1.3 0.728 2(3/2)1/3σ pp

PS–PEG (pe) LJ 9-6 0.01 1.274 (3/2)1/3σ pe

PEG–PEG (ee) Gaussian 1.0 1.820 1.2σ ee

act as a thermostat and cause the system to rigorously sample
the canonical (NVT) ensemble.41 The system evolves accord-
ing to Newton’s equations of motion, with the force on each
particle being given by the sum of the repulsive conservative
force FC, the impulsive force FR, and the dissipative force FD:

fi =
∑
j �=i

(
FC

i j + FR
i j + FD

i j

)
, (9)

FC
i j = ai j

(
1 − ri j

rc

)
r̂i j , (10)

FR
i j = σi jθi j√

�tDPD

(
1 − ri j

rc

)
r̂i j , (11)

FD
i j = −γi j

(
1 − ri j

rc

)2 (
r̂i j · vi j

)
r̂i j . (12)

In the above equations, ai j is the maximum repulsion between
particles i and j, ri j is the distance between particles i and j,
r̂i j = (

ri − r j
)/

ri j is the unit vector pointing from particle j
to particle i, vi j = (vi − v j ) is the relative velocity of particle i
to particle j, θi j is a Gaussian-distributed random number with
zero mean and unit variance, �tDPD is the size of the time step
used in integrating the equations of motion, and σi j and γi j

are multiplicative constants (also referred to as the noise pa-
rameter and friction coefficient, respectively). All forces van-
ish beyond the cutoff radius, rc. The fluctuation–dissipation
relation41 requires that

σ 2
i j = 2γi j kB T . (13)

For further details on the DPD method, we refer the reader to
the original paper of Groot and Warren.40

1. Characteristic scales

The characteristic length, mass, and energy for the
explicit-solvent model are LDPD = 1 nm, mDPD = 200 Da,
and εDPD/kB = 298 K. The characteristic length was cho-
sen a priori, and the characteristic mass is equal to the mass
of a coarse-grained PS bead, which represents two real PS
monomers. The intrinsic time scale for the DPD simulations,
calculated as in (1), is τ intrinsic,DPD = 9 ps.

2. Coarse-grained mapping

We set the particle mass and DPD cutoff radius equal
to one another for each of the four types of particles in

the system, as is typical in the literature for DPD simula-
tions (mi = 200 Da and rc = 1 nm). We used a solvent
bead density ρ = 3.0 nm−3 (reduced density equal to 3) and
let each DPD solvent bead represents 11 water molecules.
This gives a solvent mass density of 0.988 g/cm3, roughly
matching the mass density of liquid water (1 g/cm3). Kumar
et al.13 determined the solid density of itraconazole to
be 5.1 × 10−4 m3/mol, or ∼0.85 nm3/molecule. We
represent the solute (itraconazole) as three DPD beads
bound together in a chain by harmonic bonds with equi-
librium length ro = 0.8 nm and spring constant k
= 0.25 N/m. When these DPD trimers collapse in the pres-
ence of bad solvent and aggregate in the core of the nanopar-
ticle, we expect that they will on average occupy 1 nm3 per
molecule, roughly matching the solid density of itraconazole.
The diblock being modeled was PS10-b-PEG68, which con-
tains ten PS monomers and 68 PEG monomers. For the PS
beads in the diblock, we matched the experimental melt den-
sity of 1.05 g/cm3, or approximately six monomers per nm3,
by mapping two PS monomers onto each coarse-grained PS
bead, giving a PS block length of five for the model diblock.
Finally, for the PEG portion of the diblock, we matched the
radius of gyration (Rg) of PEG68 in water to experimental
values. We graphically extrapolated the experimental results
of Kawaguchi et al.42 to obtain a value of 〈Rg〉 ≈ 1.87 nm.
With the repulsion parameter between the solvent and PEG
beads used in this work (a we = 25εDPD, which we will dis-
cuss shortly), a DPD chain containing 20 beads gave 〈Rg〉
= 1.83 nm, in good agreement with the experimental value
previously mentioned; thus, we represented the 68 PEG
monomers in the real diblock by 20 coarse-grained DPD PEG
beads. As with the solute molecule, beads in the diblock
are connected via harmonic bonds with r0 = 0.8 nm and k
= 0.25 N/m. In contrast to the implicit-solvent model, the
repulsive DPD potential is not switched off for neighboring
beads in a chain that are connected via a bond.

3. Interaction parameter determination

We set all four like-particle repulsion parameters equal
to aii = 25εDPD, as is common when using DPD. The re-
pulsion parameter between solvent and PEG beads was also
awe = 25εDPD. We performed a series of simulations for vari-
ous chain lengths from 3 to 30 and found that this solvent–
PEG model gives a chain-length scaling exponent of 1.09
for the square of the radius of gyration, in close agreement
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with the experiments of Kawaguchi et al.,42 who obtained a
value of 1.1.

Once the chain architecture and other parameters are set,
interactions between the hydrophobic PS beads and the sol-
vent determine the CMC of the diblock. The CMC of PS10-b-
PEG68 is ∼1 × 10−3 wt. % in water at room temperature.43

This is too dilute to be directly simulated, even with the
coarse-grained solvent we are using. Instead of directly cal-
culating the CMC of our model diblock, heretofore referred
to as H20T5 (20 hydrophilic PEG beads and five hydrophobic
PS beads), we instead computed the CMC of H20T2, H20T3,
and H20T4 and extrapolated the results to H20T5, repeating
the procedure for a few different values of the PS–solvent re-
pulsion parameter. In each case, we fixed the repulsion pa-
rameter between PS and PEG beads at ape = 40 εDPD, the
value used by Sheng et al. in a recent DPD study of diblock
copolymer micellization.44 For each chain architecture and
PS–solvent repulsion parameter, we ran a long (2 × 106 time
steps) DPD simulation at a diblock concentration above the
CMC. Once the system equilibrated, we calculated an ag-
gregate size distribution, averaged over 106 time steps, and
used it to determine the CMC. We determined the location of
the minimum in the aggregate size distribution and counted
all diblocks in aggregates smaller than that size toward the
CMC. We found that a solvent–PS repulsion parameter of awp

= 54 εDPD gave CMCs (in wt. %) for H20T2, H20T3,
and H20T4 of 2.7±0.7, 0.13±0.02, and 0.012±0.003, with
the averages and standard deviations calculated by break-
ing the equilibration period into ten independent blocks.
Theoretical45 and experimental46 studies have shown that the
logarithm of the CMC of a diblock copolymer decreases
linearly with hydrophobic block length. The extrapolated
CMC for H20T5 based on the above values is (8±3) × 10−4

wt. %, in good agreement with the experimental CMC of
PS10-b-PEG68.

In Ref. 36 both the CMC and aggregation number were
matched to experimental values by adjusting the PS–PS and
PS–PEG interactions. In the case of our explicit-solvent
model, we were unable to match both quantities. Given that
a repulsion parameter between unlike beads of 25 εDPD pro-
duces perfect mixing (since the like-particle repulsion param-
eters are aii = 25 εDPD) and that the solvent–PS repulsion
parameter is awp = 54 εDPD, the PS–PEG repulsion param-
eter should fall somewhere between these values. Repulsion
parameters of ape = 30 εDPD and ape = 40 εDPD resulted in
a nearly identical weight-averaged aggregation number of 22,
whereas the experimental value reported by Bronstein et al.47

is 41. Hence, for the remainder of the simulations discussed
in this work, we held the PS–PEG repulsion parameter fixed
at ape = 40 εDPD.

The remaining repulsion parameters involve the solute,
which we model as a trimer. The repulsion parameter between
the solute beads in the trimer and the solvent beads was de-
termined on the basis of matching the experimental solubil-
ity of itraconazole, 1.18 × 10−4 mol/m3. Accounting for the
coarse-graining of the solvent and the volume of the solute,
this is equal to a solute volume fraction of ∼7 × 10−8. Phase
diagrams for DPD chains in monomer solvent with a dimen-
sionless bead density of 3 are available.48, 49 By extrapolat-

TABLE II. Repulsion parameters used in the explicit-solvent DPD simu-
lations, in units of εD P D , where εD P D/kB = 298 K.

Solvent Solute PS PEG

Solvent 25 68 54 25
Solute 68 25 25 (favorable) 35 (favorable)

35 (unfavorable) 55 (unfavorable)
PS 54 25 (favorable) 25 40

35 (unfavorable)
PEG 25 35 (favorable) 40 25

55 (unfavorable)

ing to trimers in monomeric solvent, we find that the solute
volume fraction (∼7 × 10−8) is matched when the repulsion
parameter between the solute beads and solvent beads is aws

≈ 68 εDPD.
Finally, for the two repulsion parameters defining the in-

teraction of the solute with the diblock (asp and ase), there
are no suitable itraconazole–diblock data that can be used
to carry out a parameterization. As with the implicit-solvent
model, we investigated two different sets of values for these
parameters—one set for favorable solute–diblock interac-
tions, and a second set for unfavorable interactions. For the
favorable interactions, we chose the solute–PS repulsion pa-
rameter to be asp = 25 εDPD and the solute–PEG repulsion
parameter to be ase = 35εDPD. Here, asp = 25εDPD represents
the case where the solute and PS beads interact and mix as
well with one another as they do with beads of their own type,
and ase = 35εDPD represents a slightly unfavorable interac-
tion, but not nearly as unfavorable as that between the solute
and solvent. For the unfavorable case, we chose the solute–PS
repulsion parameter to be asp = 35εDPD and the solute–PEG
repulsion parameter to be ase = 55εDPD. Table II summarizes
the repulsion parameters used in the explicit-solvent DPD
simulations.

4. Friction coefficients

For the explicit-solvent model, we attempted to match the
ratio of the solute and diblock diffusion coefficients. Since
no experimental diffusion coefficient is available for itracona-
zole, we estimated it by using the Stokes–Einstein relation-
ship

D = kB T

6πμr
, (14)

using the viscosity of water at 298 K. Taking the solute
radius to be r = 0.62 nm (the radius of a sphere with a
volume of 1 nm3, the solute volume), we estimated a solute
diffusion coefficient of 3.93 × 10−6 cm2/s. The experimental
diffusion coefficient of the diblock reported by Bronstein
et al.47 is 1.26 × 10−6 cm2/s, 3.12 times smaller than the
estimated solute diffusion coefficient. The DPD friction
parameters provide “knobs” which one can tune to make
adjustments to the solute and diblock diffusion coefficients.
Following other DPD simulations in the
literature,32, 33, 35, 40, 50, 51 we first chose the friction coef-
ficients for all interactions to be γ ij = 500 ns−1 (4.5 in
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dimensionless units). Preliminary simulations indicated the
ratio of the solute to diblock diffusion coefficients to be too
low. Decreasing the solvent–solute friction parameter to γ ws

= 111 ns−1 (1.0 in dimensionless units) and increasing the
solvent–PEG and solvent–PS friction parameters (γ we and
γ wp) to 2000 ns−1 (18.0 in dimensionless units) produced the
desired result, a solute-to-diblock diffusion coefficient ratio
of around 3.1.

5. Simulation details

DPD simulations of the explicit-solvent model were car-
ried out using the LAMMPS simulation package.38 We ini-
tialized the simulation by randomly placing 366 025 solvent
beads, 1200 solute molecules, and 215 diblocks in a 50
× 50 × 50 nm box (same system as in the implicit-solvent
simulations). The simulation was started directly from the
random initial configuration—no energy minimization is re-
quired to eliminate particle overlaps, due to the softness of
the DPD potential. The equations of motion for the system
were integrated with a time step of �t = 0.36 ps.

C. Nanoparticle identification

In order to analyze nanoparticles during the self-
assembly process, a cluster list was constructed from each
snapshot of particle positions by looping over all molecules
(solutes and diblocks) and determining, for each molecule,
which other molecules were in the same cluster. For the di-
blocks, only the PS portion of the chain was considered dur-
ing cluster determination. Two molecules were considered to
be in the same cluster if any of the beads in one molecule
(PS beads only for the diblocks) were within a cutoff distance
of any of the beads in the other molecule. For the implicit-
solvent model, the cluster cutoff distance for a pair of beads of
type i and j was taken as

√
2σi j (see Table I). For the explicit-

solvent model, in which all particle sizes and potential cut-
off radii are the same, the cluster cutoff distance was taken
to be 0.85 nm, roughly the distance at which the first maxi-
mum appears in the pair correlation function for a monomeric
DPD fluid with aii = 25εDPD and dimensionless bead density
of 3.48, 52

D. Rescaling of time

Implicit-solvent BD simulations and explicit-solvent
DPD simulations are both known to produce accelerated dy-
namics (with respect to full atomistic MD) when the intrin-
sic time scale is used as a measure of time. A common and
more meaningful way of interpreting the dynamics of coarse-
grained simulations is to rescale time so that some fundamen-
tal dynamic property of the system (in our case, the center-of
-mass diffusion coefficient of a single diblock at infinite dilu-
tion) is matched. The idea of obtaining the time scale through
the matching of diffusion coefficients has been employed by
Groot51, 53, 54 and was recently discussed by Füchslin et al.55

For the implicit-solvent model, we simulated a single diblock
chain and determined that a characteristic time τBD = 2.5 ns

resulted in a diffusion coefficient of 1.26 × 10−6 cm2/s, the
value experimentally determined in Ref. 47. This new BD
time scale is 125 times greater than the intrinsic BD time
scale of 20 ps, which is a result of coarse-graining. For the
explicit-solvent model, we simulated a single diblock in sol-
vent and determined that a characteristic time τDPD = 250 ps
was needed to match the diffusion coefficient to the experi-
mental value. This new DPD time scale is roughly 28 times
greater than the intrinsic DPD time scale of 9 ps, due to the
soft nature of the DPD potential. All results presented in the
following sections use the rescaled measures of time. How-
ever, we would like to point out that for any nondimension-
alization of simulation input parameters involving time, it is
appropriate to use the intrinsic time scale, which is derived
from the equations of motion, rather than from an a posteri-
ori analysis of simulation results.

III. RESULTS AND DISCUSSION

A. Dynamics of aggregation

Figure 1 shows the number of nanoparticles, weight-
averaged number of solutes per nanoparticle, and weight-
averaged number of diblocks per nanoparticle as a function
of time for the four different cases (favorable and unfavorable
solute–diblock interaction, each for the implicit and the ex-
plicit model). The weight-averaged number of molecules per
nanoparticle is defined as

〈N 〉w =
∑

clusters,i

N 2
i

Nclustered
, (15)

where Ni denotes the number of molecules in cluster i, and
Nclustered denotes the total number of molecules contained in
aggregates. Only nanoparticles containing at least two solute
molecules (but any number of diblocks) are considered in the
calculation. Particle positions were analyzed every 10 ns for
the DPD simulations and every 37.5 ns for the BD simula-
tions. The visual “steps” in the graphs are the result of fu-
sion events between aggregates. It is clear that self-assembly
in the BD simulations takes place more slowly than in the
DPD simulations. As will be discussed in Sec. III C, nanopar-
ticle diffusion coefficients in the BD simulations are smaller
than for the DPD simulations. This leads to fewer nanopar-
ticle collisions in a given amount of time and slower growth.
Another possible cause for the slower growth may be that col-
lisions between two nanoparticles in the BD simulations are
less likely to lead to fusion.

A reasonable starting point for a theoretical description of
the aggregation dynamics of this system would be a diffusion-
limited Smoluchowski approach, namely, the model investi-
gated by Marrink et al.56, 57 We numerically solved the gov-
erning equations up to a maximum cluster size of 1200 solutes
(the maximum number of solutes in our system), substituting
the Stokes–Einstein expression for the diffusion coefficient
into the rate constant expression. In Fig. 2, we show the dis-
tribution of solutes in clusters of different sizes after 30 and
70 ns for the implicit- and explicit-solvent simulations with
favorable solute–polymer interactions. Rescaling the time by
a factor of 0.75 in the theoretical model predictions produces
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FIG. 1. Number of nanoparticles, weight-averaged number of solute
molecules per nanoparticle, and weight-averaged number of diblock
molecules per nanoparticle vs time. Results shown are an average of three
randomly initialized simulations, with the error bars showing standard devia-
tions at a few points during the simulation. Solid symbols are for DPD simu-
lations and open symbols are for BD simulations. Triangles are for favorable
solute–PS interaction and circles for unfavorable solute–PS interaction.

good agreement with the explicit-solvent simulations. How-
ever, no such rescaling of time produces agreement with the
implicit-solvent simulation results. Due to the finite size of
our system, the cluster size distribution deteriorates as time
progresses. It is worth noting that, as polymers attach to the
solute clusters, collisions between clusters may not always re-
sult in fusion, which violates the assumptions built into the
theory. Better agreement with theoretical predictions might be

FIG. 2. Distribution of solutes in clusters of different sizes after 30 ns (top)
and 70 ns (bottom). Clusters containing 20 or more solutes were included in
the calculation but are not shown in this figure. The solid line represents a the-
oretical prediction based upon a diffusion-limited Smoluchowski approach
(Ref. 56). The dashed line represents the same theoretical prediction, but with
the time rescaled by a factor of 0.75. Symbols are as in Fig. 1.

found by simulating larger systems containing only solutes,
but such investigations fall outside our current focus.

In Fig. 3, we have plotted the weight-averaged number of
diblocks per nanoparticle versus the weight-averaged number
of solutes per nanoparticle at a few different instances in time
during the simulations. Although the simulations may evolve
at different rates in real time, we see that the number of di-
blocks per nanoparticle appears to be slaved to the number
of solutes per nanoparticle. In all four simulations, the ratio
of the weight-averaged number of diblocks and solutes per
nanoparticle is essentially equal to the overall ratio of their
concentrations.

As nanoparticles begin to fuse, the surface area to vol-
ume ratio goes down, but the number of solutes and diblocks
in the simulation are fixed. In all four sets of simulations, after
a short initial period, there are no solutes or diblocks that are
not part of an aggregate. When two nanoparticles collide, the
solute-filled cores fuse together, and the diblocks that were on
the surfaces of the individual particles rearrange on the sur-
face of the new, larger aggregate. Consequently, as the self-
assembly process proceeds, the number of diblocks per unit
surface area increases, and the nanoparticles become more
stable.

There is a substantial difference in the stability of the
same size nanoparticles in the BD simulations and DPD
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FIG. 3. Number of diblocks per nanoparticle vs number of solutes per
nanoparticle (both weight-averaged) at various points in time during in the
simulations. The solid line represents the ratio between the total number of
polymers and solutes present in the simulations. Symbols are as in Fig. 1.

simulations. This is most clearly illustrated by compar-
ing the simulations with favorable solute–PS interactions in
Fig. 1. The implicit-solvent nanoparticles stop fusing when
the weight-averaged number of solutes and diblocks per
nanoparticle are ∼85 and ∼15, respectively, whereas this does
not occur in the explicit-solvent simulations until there are
∼375 solutes and ∼66 diblocks per nanoparticle.

B. Nanoparticle structure and size

Figure 4 shows snapshots from the end of a DPD sim-
ulation (top) and a BD simulation (bottom) for the case of
favorable solute–PS interactions. The DPD nanoparticles are
clearly larger than the BD ones, because DPD particles con-
tinued to fuse and grow past the limit at which the BD parti-
cles became stable. However, in both cases, we see that the PS
(red beads) is distributed on the surface evenly and the PEG
(transparent gray beads) is well spread out around the cores
of the nanoparticles. In contrast, Fig. 5 shows snapshots from
the end of a DPD simulation (top) and a BD simulation (bot-
tom) for the case of unfavorable solute–PS interactions. In
both images, clustering of the PS blocks on the nanoparticle
surfaces is readily apparent, leaving larger regions of the so-
lute core (blue beads) exposed to the solvent without PEG
stabilization. A movie of a simulation corresponding to each
snapshot in Figs. 4 and 5 can be found in the supplementary
material.58

In Figs. 6–10, each data point corresponds to a different
nanoparticle, with data averaged over a long time period (typ-
ically longer than 10 μs) after it has been confirmed that the
nanoparticle is stable and no longer growing. In Fig. 6, we plot
the radius of gyration of all solute beads versus the number of
solute molecules; particles formed in both the BD and DPD
simulations share the same “core” size as a function of the
number of solute molecules those cores contain. In both cases,
the simulations with the favorable solute–PS interaction give
a slightly larger radius of gyration for the solute core, due
to slight penetration of PS beads into the core, as shown
in Fig. 7. Recall that in the implicit-solvent model, a so-

FIG. 4. Snapshot of nanoparticles formed in a DPD simulation (top) and
BD simulation (bottom) with favorable solute–PS interactions. The solute
beads are shown in blue, PS beads in red, and PEG beads as transparent gray.
Note the uniform coverage of PS beads on the nanoparticle surface and the
uniform distribution of PEG chains around the outside of the nanoparticles.
Movie files of a DPD simulation (movie 1) and a BD simulation (movie 2)
are available (Ref. 58).

lute molecule is represented by a single bead, whereas in the
explicit-solvent model it is represented by a trimer. This con-
firms that our a priori attempt at matching the solute solid
density between both models was successful.

In Fig. 7 we show the extent to which PS beads pene-
trate into the nanoparticle core. The maximum solute radius
is defined as the maximum distance between any solute bead
and the nanoparticle’s center of mass, and the PS to center-of-
mass distance is an average over all PS beads in the nanopar-
ticle. The solid black line of unit slope represents the case
in which PS beads sit (on average) directly on the particle
surface, as is the case for the BD model simulations with
unfavorable solute–PS interactions. Similar behavior is seen
for the DPD simulations with unfavorable solute–PS inter-
actions, but, in this case, the beads do penetrate the surface
slightly. The primary reason for the minor difference lies in
the nature of the potentials employed. The truncated LJ poten-
tial used in the implicit-solvent model is steeply repulsive at
short distances and does not allow the PS beads to go past the



164902-9 Self-assembly in copolymer and solute systems J. Chem. Phys. 134, 164902 (2011)

FIG. 5. Snapshot of nanoparticles formed in a DPD simulation (top) and
BD simulation (bottom) with unfavorable solute–PS interactions. The color
scheme for the beads is the same as in Fig. 4. Note the clustering of PS beads
on the nanoparticle surface, which leaves large areas of the core exposed.
Movie files of a DPD simulation (movie 3) and a BD simulation (movie 4)
are available (Ref. 58).

FIG. 6. Radius of gyration of solute beads vs the number of solute molecules
in a nanoparticle. The statistical uncertainty of each data point is no larger
than the symbol size. Symbols are as in Fig. 1.

FIG. 7. Mean distance between all PS beads in a nanoparticle and the
nanoparticle center of mass vs the maximum solute radius. The statistical
uncertainty of each data point is no larger than the symbol size. Symbols are
as in Fig. 1. The solid black line of unit slope is a guide to the eye.

nanoparticle surface, whereas the potential used in the DPD
simulations is substantially softer, allowing for some minor
penetration of the PS beads past the surface. However, for
the BD and DPD simulations with the favorable solute–PS
interaction, the PS bead penetration into the core is nearly
identical.

Figure 8 shows the overall nanoparticle radius versus the
number of solute molecules in the core. We have defined the
overall radius as the distance between the terminal bead in
a PEG block and the center of mass, averaged over all di-
blocks in the aggregate. In both the BD and DPD simula-
tions, the nanoparticles formed have a larger overall radius
when the solute–PS interaction is unfavorable than when it
is favorable. This is a result of clustering of the PS beads on
the surface, which causes the PEG blocks to pack closer to-
gether and elongate more. All of the implicit-solvent nanopar-
ticles appear to have an ∼2 nm larger overall radius than
explicit-solvent nanoparticles containing the same number

FIG. 8. Overall nanoparticle radius vs number of solutes in the nanoparticle.
The overall nanoparticle radius is the distance between the terminal bead in
a PEG block and the nanoparticle center of mass, averaged over all diblocks
in the nanoparticle. The statistical uncertainty of each data point is no larger
than the symbol size. Symbols are as in Fig. 1.
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of solute molecules in the core, for both the favorable and
unfavorable solute–PS interactions. However, the PEG head-
to-tail distance is only about ∼1.2 nm longer for the nanopar-
ticles in the BD simulations as compared to those from the
DPD simulations (not shown). This suggests that the PEG
blocks in the BD simulations tend to form a larger angle
(closer to perpendicular) with the nanoparticle surface than
those in the DPD simulations. In a sense, the PEG blocks
in the DPD nanoparticles have a greater tendency to “wrap”
around the nanoparticle surface than those in the BD simula-
tions. This is likely the result of the Gaussian repulsion po-
tential used in the implicit-solvent model, which causes PEG
beads to repel one another, as previously noted.

C. Nanoparticle diffusion coefficients

Experimentally, Kumar et al. and others have determined
nanoparticle size distributions using dynamic light scattering
(DLS).11–13, 16, 59 DLS extracts the diffusion coefficient of col-
loidal particles in a solution and back-calculates their sizes
via the Stokes–Einstein relation, rather than directly measur-
ing the particles’ sizes. Consequently, we compare the diffu-
sion coefficients of the nanoparticles in our simulations to the
values predicted by the Stokes–Einstein relation.

In our simulations, nanoparticle diffusion coefficients
were calculated by performing a linear fit of their center-of-
mass mean-squared displacements versus time, ignoring the
initial ballistic portion of the curve. We used multiple time
origins to reduce noise in the data. As with the structural prop-
erty calculations, data included in the diffusion coefficient
calculations were only from the period after the nanoparticle
had stopped growing. Figure 9 compares the diffusion coef-
ficients of the nanoparticles formed in the simulations to the
values predicted by the Stokes–Einstein relation (solid line).
The radius used in Fig. 9 for the nanoparticles is the time av-
erage of the distance from the nanoparticle center of mass to
the terminal bead in the most extended PEG chain. Clearly,
the BD nanoparticles have significantly smaller diffusion co-
efficients than the values predicted by Stokes–Einstein, more

FIG. 9. Diffusion coefficient vs overall nanoparticle radius for the nanopar-
ticles in the BD and DPD simulations. The solid line shows the Stokes–
Einstein relation. Error bars show statistical uncertainties for a few repre-
sentative data points. Symbols are as in Fig. 1.

than an order of magnitude in most cases. In contrast, the DPD
nanoparticle diffusion coefficients are reasonably close to the
Stokes–Einstein relation. In Fig. 10 we plot the BD diffusion
coefficients along with the curve D = kM−1, where M is the
total nanoparticle mass and the constant k has been chosen so
that the curve matches the diffusion coefficient of the implicit-
solvent model solute. Figure 10 illustrates that clusters of par-
ticles in BD follow Rouse behavior (D ∝ M−1), since there are
no hydrodynamic interactions present.36, 60–62 A simple rein-
terpretation of the time scale would not suffice in producing
the proper diffusion coefficients. At any given instant in time,
the masses of the aggregates that are present are different, so
each aggregate’s diffusion coefficient differs from the proper
value by a different factor.

The nanoparticles formed in our simulations are quite
small compared to those formed in experiments. As the
size of the nanoparticles becomes larger, the discrepancy
between the diffusion coefficients given by Stokes–Einstein
and those observed in BD simulations will grow larger and
larger. Consider a nanoparticle with a radius of 50 nm, which
will contain ∼620 000 solutes and ∼100 000 diblocks. The
Stokes–Einstein relation gives a diffusion coefficient of 4.9
× 10−8 cm2/s for this nanoparticle. However, if we calculate
the mass of such a nanoparticle and plug it into the relation-
ship given by the solid black curve in Fig. 10 (extrapolating
the Rouse behavior), we obtain a diffusion coefficient of 6.23
× 10−12 cm2/s, nearly 10 000 times smaller than the Stokes–
Einstein value. Thus, the Rouse scaling inherent in the BD
simulations means that one cannot simultaneously capture the
correct diffusive behavior of both small structures (single so-
lutes, singles diblocks, or small clusters) and large structures
(containing many hundreds or thousands of molecules) with-
out the presence of hydrodynamic interactions. One possible
solution to this problem is to employ an algorithm to explic-
itly add analytical hydrodynamic corrections, but most meth-
ods scale very poorly with the number of particles.63, 64

One might wonder if the BD method itself, rather
than the absence of explicit-solvent particles, gives rise

FIG. 10. Diffusion coefficients for nanoparticles from BD simulations, along
with the curve D = kM−1. The constant k was chosen so that the curve passes
through the infinite dilution diffusion coefficient of the solute for the implicit-
solvent model. Error bars show statistical uncertainties for a few representa-
tive data points. Symbols are as in Fig. 1.
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to the incorrect scaling of diffusion coefficients with the
implicit-solvent model. One alternative would be to try evolv-
ing the implicit-solvent model with the pairwise, momentum-
conserving frictional and dissipative forces from the DPD
method (this is referred to as the “DPD thermostat”). How-
ever, with an implicit-solvent simulation, the result of all
forces being between pairs of particles and obeying momen-
tum conservation is that an already-formed cluster never sees
its center-of-mass momentum changed unless it comes within
the interaction range of another cluster. Consequently, the
nanoparticle aggregates behave ballistically, rather than dif-
fusively (we confirmed this by running such simulations and
plotting the mean-squared displacement versus time for vari-
ous nanoparticles).

D. Nanoparticle stability

Recently, Budijono et al.16, 65 conducted experiments in
which they used flash nanoprecipitation to study the surface
coverage of PS15-b-PEG118 on monodisperse 210 nm diam-
eter latex spheres. Although the PS15-b-PEG118 has a longer
PEG block than the diblock used in this work (PS10-b-PEG68),
these experiments still enable us to put in context the sur-
face area per polymer calculated in our simulations. Budi-
jono et al. varied the polymer concentration and determined
when free micelles began forming. At this critical concentra-
tion, they used DLS and a Baleux assay to determine the av-
erage number of diblocks on the surface of each latex sphere,
from which they calculated the average surface area covered
by each polymer. The area occupied by each polymer was cal-
culated by setting the total area covered by n polymers to the
total area available for coverage,

nπ

(
ξ

2

)2

= 4π

(
Dsphere

2
+ ξ

2

)2

, (16)

and then solving for the area occupied by a single polymer
chain,
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ξ

2
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= π

n

(
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1 − 2√
n

)2

. (17)

In Eqs. (16) and (17), n represents the number of polymer
chains on the surface, Dsphere represents the diameter of the
core, and ξ represents the “blob size” or diameter of the space
that a single polymer occupies on the surface. In their exper-
iments, Budijono et al.16, 65 found that the surface area per
polymer for PS15-b-PEG118 was 13.9 nm2

. However, the sur-
face area that the same polymer would occupy if it were in a
randomly coiled configuration is 23.8 nm2.16

Figure 11 shows the surface area per diblock for the fi-
nal nanoparticles formed in the DPD and BD simulations
with favorable solute–PS interactions. The diameter used to
calculate the surface area per polymer for each nanoparticle
was taken as the diameter of a sphere containing the number
of solute molecules in that nanoparticle (at the solid density
of the solute). For the diblock copolymer used in our sim-
ulations, PS10-b-PEG68, experimental values of the surface
area per polymer are unknown, but the surface area occu-
pied by this polymer in a randomly coiled configuration is

FIG. 11. Surface area per polymer vs number of solutes in nanoparticle for
simulations with favorable solute–PS interactions. Symbols are as in Fig. 1.
The solid line represents the surface area occupied by a randomly coiled di-
block (Ref. 16).

13.6 nm2.16 Based upon the experiments of Budijono
et al. using a similar polymer,16, 65 we would expect
the surface area per polymer on the nanoparticle surface to
be roughly half of the value calculated for the random coil
configuration. The largest particles formed in the DPD sim-
ulations have an area per polymer that is roughly half of the
value for the isolated, randomly coiled polymer. On the other
hand, the BD particles are stable and resist fusion even when
the surface area per polymer is two to four times greater than
the surface area occupied by polymers in DPD nanoparticles.
For the DPD data points shown, the three smallest nanopar-
ticles have a large surface area per polymer. Each of these
nanoparticles was the smallest and most poorly covered in its
simulation box (data shown are from three separate simula-
tions), but all other nanoparticles were sufficiently well cov-
ered to prevent any further fusion from occurring.

In order to gain more insight as to why the BD nanopar-
ticles stop fusing earlier than similar DPD nanoparticles of
the same size and surface coverage, we ran controlled simula-
tions in which we placed two identical nanoparticles in a sim-
ulation box and monitored the distance between the nanopar-
ticle centers of mass. The nanoparticles we used contained
100 solutes and 16 polymers each (roughly the size at which
the BD nanoparticles stopped fusing, with a surface area per
polymer of ∼40 nm3) and utilized the favorable solute–PS
interactions. The DPD nanoparticles rapidly fused together,
whereas the BD nanoparticles “collided” many times, but
could not get close enough to fuse. This suggests that the
DPD nanoparticles require substantially more polymers per
unit surface area than the BD nanoparticles before they be-
come stable with respect to fusion with one another, as illus-
trated in Fig. 11.

E. Relative efficiency of BD versus DPD

Both the BD and DPD simulations utilized a 50
× 50 × 50 nm system size, but the BD simulations used 3995
total particles versus 375 000 for the DPD simulations (both
simulations contained the same number of diblock and solute
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molecules). A single BD simulation of 60 μs of effective real
time took 7.5 h on a single core of a 2.77 GHz Intel Core 2
Duo processor, whereas a single DPD simulation of the same
effective time running on 16 of the same cores in parallel took
about 207 h. The 7.5 CPU-h required for a BD simulation was
∼440 times less than the ∼3300 CPU-h required for a DPD
simulation of the same system size and simulation length.

It appears at first that BD simulations are much more
efficient than the DPD simulations and may provide a means
for simulating larger systems for longer times. However, as
previously mentioned, the nanoparticle diffusion coefficients
in the BD simulations are substantially smaller than those
given by the Stokes–Einstein relation. For a particle with
an overall radius of 10 nm, the BD diffusion coefficient is
roughly 20–30 times less than the Stokes–Einstein value,
and for a radius of 50 nm the diffusion coefficient is nearly
10 000 times smaller. If one were to simulate the flash
nanoprecipitation process and incorporate the effects of
mixing in the solvent, the result would be that the particles
would grow larger than the ∼10 nm radius particles observed
in our simulations. As the particles grew larger, the BD
simulations would effectively become slower, because the
nanoparticle diffusion coefficients (and, thus, the number of
collisions that can lead to nanoparticle fusion events) would
drastically stray away from Stokes–Einstein, as illustrated
above. Based upon the scaling of diffusion coefficients seen
in our simulations, the increase in computational efficiency
of the BD simulations (a factor of ∼440) would be canceled
out when the overall nanoparticle radii reached ∼17 nm.

IV. CONCLUSIONS

In summary, we have developed an explicit-solvent DPD
model and an implicit-solvent BD model to study the flash
nanoprecipitation process in the limit of instantaneous mixing
of solvent with antisolvent. Both models were parameterized
based on the recent experiments of Kumar et al.13 The struc-
tural properties of the nanoparticles formed in both sets of
simulations are very similar; however, the PEG chains in the
stabilizing layer around the nanoparticles are more extended
in the BD simulations compared to the DPD simulations. The
DPD nanoparticles are stable when the surface area per poly-
mer is approximately half of that of a chain in an isolated
random coil configuration, whereas the BD nanoparticles are
stable when the surface area per polymer is two to four times
larger. The repulsion between PEG chains in the BD simula-
tions produces artificially stable nanoparticles, with regard to
fusion between them. The PEG chains in the implicit-solvent
model form a repulsive “cloud” around the outside of the par-
ticle, whereas those in the explicit-solvent tend to behave in
a more stringlike fashion. Implementing a less coarse-grained
model for the PEG chain in the BD simulations (i.e., using
more than eight beads to represent the 68 monomers in the
PEG3000 chain) and a shorter-ranged potential (i.e., a trun-
cated Weeks–Chandler–Andersen (WCA) potential) between
beads may be a way of eliminating this artifact.

The implicit-solvent nanoparticles grow at a significantly
slower rate than the explicit-solvent ones, which is largely a
result of the discrepancy in their diffusion coefficients. We

have shown that the diffusion coefficients of the DPD parti-
cles are near the theoretical values predicted by the Stokes–
Einstein relationship (D ∝ R−1), whereas the diffusion coeffi-
cients of the BD nanoparticles obey Rouse scaling (D ∝ M−1).
As the particles become larger, the BD diffusion coefficients
become progressively smaller with respect to those given by
the Stokes–Einstein relationship. This effectively slows down
the BD simulations, and at some point they become effec-
tively slower than the explicit-solvent DPD simulations, de-
spite being ∼440 times more computationally efficient (on the
basis of CPU time needed for a typical system).

Our simulations produced particles that were quite small
compared to those created in flash nanoprecipitation experi-
ments. One primary reason for this is that we investigated the
limit of infinitely fast mixing of solvent and antisolvent. In
reality, the mixing process is complex, with the solvent and
antisolvent mixture becoming homogeneous on successively
smaller length scales as time progresses. Since the solute
molecules are present at a higher supersaturation ratio than
the diblock copolymers, they begin to precipitate before the
copolymers arrive at the nanoparticle surfaces to arrest their
growth and stabilize them—this suggests that longer mixing
times will produce larger particles. In order to simulate the
formation of larger particles than those formed in this work,
larger systems and longer simulations times are needed. An
implicit-solvent approach without hydrodynamic interactions
may seem like a computationally efficient way to achieve this
feat at first, but we have demonstrated some pitfalls associated
with this approach, mainly that the aggregated structures have
drastically incorrect diffusive behavior. On the other hand, the
DPD method produces more realistic results, but the explicit
representation of the solvent limits the size of the systems that
can be investigated. Nonequilibrium simulations of highly di-
lute systems in which hydrodynamics are important will con-
tinue to present a significant challenge to researchers.
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