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We examine issues involved in applying and interpreting free-energy perturbation~FEP!
calculations in molecular simulation. We focus in particular on the accuracy of these calculations,
and how the accuracy differs when the FEP is performed in one or the other direction between two
systems. We argue that the commonly applied heuristic, indicating a simple average of results taken
for the two directions, is poorly conceived. Instead, we argue that the best way to proceed is to
conduct the FEP calculation in one direction, namely that in which the entropy of the target is less
than the entropy of the reference. We analyze the behavior of FEP calculations in terms of the
perturbation-energy distribution functions, and present several routes to characterize the calculations
in terms of these distributions. We also provide prescriptions for the selection of an appropriate
multistage FEP scheme based on how the important phase-space regions of the target and reference
systems overlap one another. ©2001 American Institute of Physics.@DOI: 10.1063/1.1359181#

I. INTRODUCTION

Free-energy perturbation~FEP! is one of the most
widely used methods to compute free energies via molecular
simulation.1–4 A single-stage FEP calculation5 yields the
free-energy difference between two systems as an ensemble
average performed on only one of them. The working equa-
tion can usually be put in the form

e2b~A12A0!5^e2b~U12U0!&0 . ~1!

The ‘‘0’’ and ‘‘1’’ subscripts indicate properties for the two
systems of interest;A is the Helmholtz free energy,U is the
configurational energy, andb51/kT with k the Boltzmann’s
constant andT the absolute temperature. The angle brackets
indicate an ensemble average performed on the 0 system,
which we call thereference; the 1 system we call thetarget.

Either system of interest can be selected to be the refer-
ence, and thus the FEP calculation for a given pair of sys-
tems can be performed in either of two directions. If the
systems differ in the presence of a single molecule, the FEP
calculation yields the chemical potential, and in this case the
two implementations are commonly known as the Widom
insertion6,7 and Widom deletion8 methods. In what follows
we will present the idea that in all FEP calculations one of
the directions can be considered uniquely as an ‘‘insertion’’
calculation while the other represents a ‘‘deletion,’’ so we
will adopt this terminology here to refer to the two directions
of an FEP calculation.

In principle, insertion and deletion methods yield
equivalent results for the free-energy difference, but in prac-
tice the calculated results differ systematically.9–16 It is well

known that the calculation in one direction typically overes-
timates the free-energy difference, while calculation in the
other direction underestimates it. What is not well appreci-
ated is the asymmetry in themagnitudeof the over- and
underestimations. Many researchers treat the errors in the
two methods as being of the same magnitude and opposite
sign.17–26 Therefore, a heuristic has emerged that the best
estimate of the free-energy difference should be taken as the
average of the insertion and deletion~forward and reverse!
free energies. This practice is wrong. It is the aim of this
work to highlight this misconception and present a means to
analyze the magnitude asymmetry.

The reliability of the FEP calculations has two facets,
representing theprecisionandaccuracy, respectively.Preci-
sion describes reproducibility of the measurements, and can
be characterized by a variance statistic. In a previous study27

we set up quantitative models to describe the precision of
FEP calculations, and showed that precision is closely re-
lated to the entropy difference between the reference and
target systems. We applied our analysis to develop a pre-
scription for selecting optimal intermediates in staged FEP
calculations.

The accuracyof a calculation is distinct from its preci-
sion. It indicates the correctness of the estimate, or how the
measurement result deviates from thetrue or exactvalue in
repeated measurements. Arguably, the accuracy of a result is
much more important than its precision, yet it usually gets
little attention. One reason is that in many situations the in-
accuracy of an ensemble average is much less than its im-
precision. However, this circumstance often does not hold
for FEP calculations, even in cases where other ensemble
averages are of good accuracy. Indeed, FEP results could be
in good precision but terrible accuracy. A simple~and ex-a!Electronic mail: kofke@eng.buffalo.edu
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treme! example is the deletion calculation of the chemical
potential for the hard-sphere~HS! system. According to this
method the chemical potential is always zero whatever the
system condition. Obviously, this is a wrong answer~except
for zero density!, but it has perfect reproducibility. Fortu-
nately the result is so obviously wrong that no one would
make the mistake of interpreting its good precision as good
accuracy. But this situation is anomalous, and comes about
because the hard-sphere system has only two possible energy
levels ~zero and infinity!. Inaccuracy is much better dis-
guised in systems only slightly more realistic than the hard-
sphere model, even one having only three energy levels.28

Poor understanding of the accuracy in realistic systems leads
to misinterpretations of simulation results and misapplica-
tions of simulation methodologies.

In contrast to precision, where the block-average vari-
ance provides a good measure, there is no simple way to
assess the accuracy of an FEP calculation. In this study we
address this problem, and examine the inaccuracy in the FEP
calculations as a function of the simulation length and basic
characteristics of the target and reference systems. We ana-
lyze the source of the simulation error and develop the meth-
odology and models to characterize it using energy distribu-
tion functions. We also further study the asymmetry behavior
of the FEP calculations and correct some related misconcep-
tions. In the next paper of this series we apply this under-
standing to develop an easy-to-use heuristic that gauges the
inaccuracy of insertion FEP calculations.

We present in Sec. II the analysis and modeling of the
inaccuracy. In Sec. III we describe simulations used to verify
the inaccuracy model and heuristic. Simulation results and
discussions are given in Sec. IV, and concluding remarks in
Sec. V.

II. BACKGROUND AND THEORY

A. Generalized insertion and deletion

Our previous studies13,14,27,28show that the entropy dif-
ference between the reference and target systems is an im-
portant quantity in determining both the accuracy and preci-
sion of FEP calculations. Therefore, it is convenient to
identify the FEP systems according to their entropy. In our
study, the higher-entropy system is denotedH and the lower-
entropy one isL. We define the difference of a quantity
between two systems as (L)2(H). For example, the free-
energy, potential-energy, and entropy differences are defined
as DA5AL2AH , DU5UL2UH , and DS5SL2SH , re-
spectively; by definition,DS,0.

In a Widom insertion calculation for the chemical poten-
tial, the reference system can be viewed as one in which the
inserted molecule moves around without interference from
any of the other molecules in the system. The extra ‘‘free-
dom’’ available to this molecule accords the reference with a
higher entropy than the target. Correspondingly, we define
generalized insertion and deletion directions for any FEP cal-
culation based on the sign of entropy difference along the
perturbation direction. We call an FEP calculation a gener-
alized insertion if theH system is used as the reference,
where the entropy difference along the perturbation direction

is less than zero,S12S0,0 ~where the 1 and 0 subscripts
indicate the target and reference systems, respectively, as
discussed in the Introduction!. Similarly, a generalized dele-
tion calculation uses theL system as the reference, and pro-
ceeds in a direction of increasing entropy:S12S0.0.

In a generalized insertion calculation we have

exp~2bDA!5^exp~2bu!&H , ~2!

whereu is the difference of configurational potential energy
U(rN) between theL and H systems, i.e.,u5UL(rN)
2UH(rN), the energy change encountered in a trial sam-
pling. For convenience, we simply callu ‘‘potential energy’’
or ‘‘energy’’ in the following, but one should keep in mind
that it really means the potential energy change during the
perturbation. The momentum contributions to the Hamil-
tonian are ignored in this study, assuming they are the same
in both systems. The subscripted angle brackets^...&H indi-
cate the canonical-ensemble average sampled according to
the Hamiltonian for the higher-entropy system. Similarly, the
free-energy difference in a generalized deletion calculation is
given by

exp~1bDA!5^exp~1bu!&L . ~3!

Note that Eqs.~2! and~3! are equivalent, as shown by Shing
and Gubbins8,29 in the context of the chemical potential cal-
culation.

B. Entropy and configuration space

The reference and target systems in an FEP calculation
share the same phase space, but the important regions of
phase space—those that contribute most to their respective
partition functions—may differ between the two systems.
The entropy of a system is closely related to the size of the
important region of phase space. The ‘‘important region’’
could be defined, for example, by considering the energy-
distribution functionP(U)

P~U !5
1

Q
V~U !e2bU, ~4!

whereQ andV are the canonical and microcanonical parti-
tion functions, respectively. We could define a threshold
value P* for P(U), such that an integral over only those
energiesU that have P(U) above the threshold@P(U)
.P* # would yield some substantial fraction~e.g., 99%! of
the integral taken instead over all energies. Then, any con-
figuration rN having an energyU(rN) such thatP@U(rN)#
.P* would be considered an ‘‘important configuration.’’
Note that a configuration may be important if it has a low
~large negative! energy, or if it is one of many configurations
~largeV! having a nonprohibitive energy.

In the following analysis, we will consider FEP calcula-
tions between systems in which the set of important configu-
rations for the low-entropy system~designatedGL! forms a
wholly contained subset of the important configurations
(GH) of the high-entropy system:GL,GH , as shown in Fig.
1. This is the case, for example, for systems of hard spheres
in which one sphere is~L system! or is not~H system! inter-
acting with the others. It is very likely that this situation~i.e.,
GL,GH! holds for other molecule-insertion system pairs in-
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volving more realistic and complex potentials. In the event
that the important regions do not relate this way, it is un-
likely that FEP can be made effective without setting up
stages that break the calculation into pieces involving pairs
of systems that do follow the relationGL,GH . We discuss
this matter further in the Discussion section below.

The configurations inGH that do not lie inGL fall out-
side because their energy is greater than the energies of the
configurations inGL . Thus, we expect that configurations in
GH will exhibit energy differencesu that are typically posi-
tive and large. The primary exceptions are those configura-
tions that lie also inGL , where the configurations will tend
to have a value ofu that is zero or negative. Note that this
characterization of the value ofu in GH andGL is more of an
expectation than a rule; deviations from this description, per-
haps significant ones, might be found in particular systems.
Much of what follows does not rely on this characterization,
but it can provide guidance to the intuition.

C. Energy distributions

We can rewrite the ensemble averages in Eqs.~2! and
~3! in terms of a one-dimensional integral weighted by the
distribution of energy changes encountered in a simulation,
as proposed by Shing and Gubbins.8 Following their nota-
tion, we definef (u) andg(u) as the distribution functions of
the potential energy changeu encountered in a simulation
using insertion method~H system as the reference! and de-
letion method~L system reference!, respectively. Then, Eq.
~2! becomes

exp~2bDA!5E du exp~2bu! f ~u!, ~5!

where the integral goes from2` to 1`. Likewise, the de-
letion free-energy formula is given by

exp~1bDA!5E du exp~1bu!g~u!. ~6!

Note that bothf (u) andg(u) are normalized; also, physical
considerations place a lower bound on the energy for which
g(u) is nonzero. A useful relation between thef andg dis-
tributions is8,30

f ~u!exp~bDA!5g~u!exp~bu!. ~7!

The difference in the ensemble-averaged energies be-
tween theL and H systems is given as a derivative of the
free-energy difference,DU5](bDA)/]b. With Eqs. ~5!–
~7! the result can be expressed in terms of the energy distri-
butions and their temperature derivatives

DU5E duFu2
] ln f ~u!

]b Gg~u!

5E duFu1
] ln g~u!

]b G f ~u!. ~8!

These temperature derivatives can in turn be interpreted via
fluctuation formulas

] ln f ~u!

]b
52F ^UHd&H

^d&H
2^UH&HG , ~9!

] ln g~u!

]b
52F ^ULd&L

^d&L
2^UL&LG , ~10!

where the angle brackets represent an ensemble average in
the H or L system as indicated, andU is the energy in the
corresponding system; also,d is the Dirac delta function
applied to the energy changeu, for which the ensemble av-
erage then gives the distribution functions:f (u)5^d&H and
g(u)5^d&L .

These results show that the energy change cannot be
obtained from knowledge of the distribution functions at
only one temperature. But, it is interesting to consider the
degree of correlation between the energy changeu and the
configurational energyU in theH andL systems. According
to the formulas above, correlations in theH system are rel-
evant for ranges ofu whereg(u) is non-negligible, i.e., for
configurations inGL . While these configurations have a fa-
vorable u, it is not likely that the energyUH will differ
markedly or systematically from the average^UH&H in this
region. For particle insertion, these are configurations in
which a hole has opened up to permit the insertion of a
molecule. Except for very high-density systems, opening
such a hole need not be associated with a large change in the
energyUH . In contrast, the correlations betweenu andUL in
the L system, over the regionGH where f (u) is non-
negligible, will be significant. The energy-changeu is large
in these regions, which indicates thatUL will also be system-
atically large. From these arguments we anticipate that theb
derivative of lnf(u) will be small, while the derivative of
ln g(u) will be non-negligible. Thus, from Eq.~8! we can
approximate the energy change as a simpleg integral, but
cannot express it in terms of thef integral

DU'E ug~u!du. ~11!

Assuming this result is valid, then the entropy difference can
also be expressed in terms of thef andg distributions; thus

DS'E g~u!ln@ f ~u!/g~u!#du, ~12!

which, again, is by definition less than zero.

FIG. 1. Schematic diagram of phase space and important configurations in
an FEP calculation. The shaded region represents the important configura-
tions for the high entropy system (GH). The white region inside~and part
of! GH is the important configurations for the low-entropy system,GL . The
significant feature of this diagram isGL is completely insideGH . In real
systems the shapes of theH andL regions are vastly more complex than the
simple two-dimensional representations presented here.
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Figure 2 shows the typical shape of thef (u) and g(u)
distributions, together with the Boltzmann factor that is av-
eraged to obtain the free-energy difference. By looking at the
plot it is clear that the important region for the insertion
calculation is the low-energy region, while the high-energy
region is critical to the deletion calculation. These regions
correspond to the tails of thef or g distributions. They are
prone to poor sampling in a finite length simulation since
they correspond to configurations to be sampled with low
probability. So, in terms of thef andg distribution functions,
the error in the free-energy calculation comes from the poor
sampling of the distribution tails, more explicitly, the low
energy tail for insertion calculation and the high energy tail
for deletion calculation.

D. Modeling inaccuracy

Let us generalize the problem in the following way. Sup-
pose a quantityX is an average of functionF(u) according
to weighting distributionp(u), i.e.,

X5E
2`

`

p~u!F~u!du. ~13!

In connecting Eq.~13! to FEP calculations, the average
quantityX is either exp(2bDA) for the insertion calculation
or exp(1bDA) for the deletion calculation;p(u) is the
weight function, either f (u) or g(u); and F(u) is
exp(2bu) or exp(1bu) for the insertion and deletion calcu-
lations, respectively. During the simulation we sampleu ac-
cording to p(u) and finally measure the averageX as a
sample average ofF(u). It is clear that the inaccuracy or
error in the averageX depends on how wellp(u) is sampled.
For a long but finite length simulation, the high-probability
region of p(u) will be well sampled, while the low-
probability regions, or the wings of the distribution, are gen-
erally not well sampled. This situation is shown schemati-
cally in Fig. 3~a!, where the shaded regions indicate energies
that are not well sampled. For any given sample, one can
identify energy values,u1 and u2 , such thatu is never
sampled for the regions (2`,u1) and (u2 ,1`). Each such
energy is referred to as alimit energyin the following. The
exactX is given by the averaging over whole range ofu

Xexact5E
2`

u1
p~u!F~u!du1E

u1

u2
p~u!F~u!du

1E
u2

1`

p~u!F~u!du. ~14!

As part of our model development, we now assume that in a
simulation u is sampled perfectly according top(u) for u
betweenu1 andu2 . Then, theX measured in the simulation
will be

Xsim5E
u1

u2
p~u!F~u!du, ~15!

and the simulation error inX is given by the difference be-
tweenXsim andXexact

dX5Xsim2Xexact

52E
2`

u1
p~u!F~u!du2E

u2

1`

p~u!F~u!du. ~16!

Now we return specifically to the FEP calculations. For
the insertion calculation, the high-energy term in Eq.~16!
has an extremely small value and therefore can be dropped.
Similarly, the low-energy term in Eq.~16! for a deletion
calculation can be ignored. We then can write the inaccuracy
of insertion and deletion calculations as follows:

dEins5exp~2bDAins
sim!2exp~2bDAexact!

52E
2`

uf
f ~u!exp~2bu!du ~17!

and

FIG. 2. A plot of typical f and g distributions as functions of potential
energy changeu. Both distributions are normalized. The associated Boltz-
mann factor integrands for thef and g distributions are also schematically
shown in the plot, as the dashed curves.

FIG. 3. Depiction of the probability distribution~representingf or g!,
sampled region, and the relative inaccuracy of the FEP calculations.~a!
Shaded regions@the tails of distributionp(u)# are those that have not been
well sampled during a finite length simulation, while the region in between
is perfectly sampled;~b! the relative inaccuracy of the insertion~ f ! calcu-
lation is given by the area with energy less thanuf under theg distribution,
while the relative inaccuracy of the deletion~g! calculation is given by the
area with energy larger thanug under thef distribution.
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dEdel[exp~1bDAdel
sim!2exp~1bDAexact!

52E
ug

1`

g~u!exp~1bu!du, ~18!

whereuf is the lowest~limit ! energy sampled in an insertion
calculation andug is the highest~limit ! energy sampled in a
deletion calculation. We can see in Eqs.~17! and ~18! that
the inaccuracy of FEP calculations is given by the contribu-
tions of the important configurations that are never sampled.

It is helpful to look at the relative error (de) of the FEP
calculations. Knowing Eq.~7!, the relationship betweenf and
g distributions, we have

deins[
exp~2bDAins

sim!2exp~2bDAexact!

exp~2bDAexact!

52E
2`

uf
g~u!du ~19!

and

dedel[
exp~1bDAdel

sim!2exp~1bDAexact!

exp~1bDAexact!

52E
ug

1`

f ~u!du. ~20!

Note that for small errors, the magnitude of the relative error
in exp(6DA) is roughly equal to the magnitude of the abso-
lute error inDA itself.

Equations~19! and ~20! tell us that the relative inaccu-
racy of the insertion~f! calculation is given by the area with
energy less thanuf under theg distribution, while the rela-
tive inaccuracy of the deletion~g! calculation is given by the
area with energy larger thanug under thef distribution. This
relation is depicted in Fig. 3~b!.

One may note that the relative errors of free-energy cal-
culation, as shown by Eqs.~19! and ~20!, are always less
than or equal to zero since the area under anf or g curve is
non-negative. This implies thatDAins

sim.DAexact and DAdel
sim

,DAexact, or in other words, for an insertion calculation the
free-energy difference is overestimated, and for a deletion
calculation it is underestimated. This analysis agrees with the
common understanding and observation of FEP calculations.
However, this common understanding often includes a mis-
conception in the magnitude of the accuracy of the FEP cal-
culations. The prevalent view is that both calculations are
equally wrong, and the best result is obtained by splitting the
difference.17–26 Equations~19! and ~20! do not explicitly
provide information as to the magnitude of inaccuracy. To
further look at the asymmetry problem, we need to study
some properties of thef andg distribution functions.

E. Asymmetry of FEP calculations

Asymmetry in the FEP calculation is easily understood
in the context of the preceding analysis by considering the
overlap of thef andg distributions. If the upper limit energy
of the g distribution lies well above the bulk of thef distri-
bution, then the error in deletion is small; likewise, if the
lower limit energy off lies below the bulk ofg, the insertion

error is small. In the extreme cases of no overlap@Fig. 4~a!#,
both calculations give poor results, while for complete over-
lap both give equally good results. It is in the intermediate
case that the asymmetry of the methods emerges. For some
intermediate degree of overlap, the better result is obtained
by sampling the distribution that is broader. As the amount
of sampling is increased, and the limit energies move further
into the wings of the distributions, the broader distribution
will encompass the narrower distribution first, meaning that
sampling on the broader distribution will provide a result of
greater accuracy@Figs. 4~b! and 4~c!#.

This analysis raises an obvious question: Which distri-
bution is wider, thef ~insertion! distribution or theg ~dele-
tion! distribution? Thef distribution describes sampling of
the system having the larger entropy, so it is tempting to
conclude that it is always the wider distribution. For the Wi-
dom calculation of the chemical potential, this is indeed the
case. However, we are unable to prove this as a general
result, so at present we leave it as a reasonable speculation
indicating that insertion FEP calculations are inherently more
accurate than corresponding deletion calculations.

FIG. 4. Asymmetry in accuracy of FEP calculations. The inaccuracy of the
insertion~deletion! calculation is given by the shadow area under theg( f )
distribution. The size of the area is related to the length of simulation, the
overlap level of the energy distributions, and the breadth of each distribu-
tion. This series of plots show how the inaccuracy of both calculations
changes as increasing the simulation length increases the degree of overlap
of distributions. The insertion calculation, which typically samples the
broader energy distribution~ f !, will give less simulation error than the
deletion calculation.
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F. Most-likely analysis

The next step in our model development is the formula-
tion of a means for estimating the limit energies that govern
the inaccuracy of the FEP calculations. What inaccuracy can
be expected for a simulation with given lengthM? Assuming
prior knowledge of thef andg distributions, it is possible to
have a general answer to this question. It is clear from the
foregoing inaccuracy model that the magnitude of the error
depends on the value of limit energyug ~for insertion calcu-
lation! or uf ~for deletion calculation!. Once we have the
limit energy, we know the inaccuracy of the calculation. So,
the question becomes what is the limit energy for a given
simulation?

The limit energyuf or ug can be found easily in a simu-
lation. Of course, for a given simulation lengthM we would
find different values ofuf or ug in different independent
simulation runs. However, a distribution of limit energies
P(u) can be defined to describe the limit energies observed
in repeated runs of the same lengthM. This distribution will
exhibit some maximum corresponding to the most likely
limit energyu* to be observed in any simulation. Then, we
identify the most likely free energy to be that obtained by
integrating Eq.~17! or ~18! to this most likely limit energy.
Accordingly, we define the inaccuracy as the difference be-
tween the most-likely free-energy outcome and the true
value. Now, the key quantities needed are the probability
function P(u) and, from this, the most-likely limit energy,
u* .

First, let us look at these quantities for an insertion cal-
culation. The probability density thatuf is the lowest energy
sampled in a simulation withM insertion trials is given by

P~uf !5 f ~uf !F E
uf

1`

f ~u!duGM21

. ~21!

The right-hand side of Eq.~21! is the product of the prob-
ability density thatu5uf is sampled exactly once, and the
probability that for all other (M21) samplings the energy
value is betweenuf and infinity ~u,uf is never sampled!.

The most-likely limit energyuf* is obtained by maximiz-
ing P(u), and thusuf* should satisfy@]P(u)#/]uuu5u

f*
50,

or ~more conveniently! @] ln P(u)#/]uuu5u
f*
50. After straight-

forward derivation starting with Eq.~21!, we get~for large
M!

] ln f ~u!

]u U
u5u

f*
5M f ~uf* !. ~22!

Similarly, for the deletion calculation we have

P~ug!5g~ug!F E
2`

ug
g~u!duGM21

. ~23!

Then the most-likely limit energyug* is

] ln g~u!

]u U
u5u

g*
52Mg~ug* !. ~24!

Equations~22! and ~24! indicate the most-likely limit
energies for the insertion and deletion FEP calculations with

simulation lengthM, knowing the energy distribution func-
tions f andg. Insertion of these limit-energy values into Eqs.
~17! @or ~19!# and ~18! @or ~20!# yields the most-likely inac-
curacy of the corresponding FEP calculations.

III. VERIFICATION AND SIMULATION TESTS

As described in Sec. II D, our inaccuracy model agrees
with some common qualitative observations and understand-
ing of the FEP error. Here, we conduct simulation tests to
assess quantitatively the ability of the model to describe the
inaccuracy of FEP calculations. We performed Monte Carlo
simulation of simple Lennard-Jones~LJ! fluids in theNVT
ensemble. We consider a reduced density of 0.9@all units are
made dimensionless by the LJ size~s! and energy~«! pa-
rameters#, and two reduced temperatures: 0.9 and 2.0. The
perturbation systems are defined as follows: ‘‘systemH’’
contains 107 particles interacting according to the LJ poten-
tial ~i.e., it has 107 LJ particles!, and one particle that inter-
acts with the others according to the hard-sphere potential
with diameter 0.8. The LJ potential is truncated at a separa-
tion of 2.5, and no long-range correction is included. ‘‘Sys-
tem L’’ has 108 LJ particles. The insertion calculation (DS
,0) corresponds to the perturbation direction from system
H to L, i.e., the reference is systemH. The trial insertion
process involves the identity change of the HS to a LJ par-
ticle and the growth of the particle size. The deletion calcu-
lation uses systemL as the reference and involves the change
of a LJ particle to a hard sphere. Both insertion and deletion
FEP calculations were performed during the simulation. This
introduces a small approximation to the calculation, in that
the deletion calculation should be performed for 108 LJ
spheres, but separate tests show that the error introduced by
this consideration is negligible.

A test of the inaccuracy model requires as input the ex-
act energy distribution functions. These we obtained by mak-
ing histograms of the perturbation energy encountered in a
long simulation with 5M cycles~where each cycle comprises
108 attempts of MC particle displacement followed by one
trial of insertion or deletion measurement!. The true free-
energy difference is also needed to gauge the inaccuracy of
the FEP calculations. We obtained this value using the rela-
tionship described in Eq.~7!, or more explicitly, exp(bDA)
5exp(bu)g(u)/f(u), applied to the measuredf andg distribu-
tions over their region of overlap. Particularly important to
the analysis are the low-energy tail off distribution and the
high-energy tail ofg distribution, which typically have poor
statistics. To improve them, we correct the low-energy tail of
f (u) using the information of the ‘‘true’’ exp(bDA) just ob-
tained, along withg(u) which has very good statistics in the
low-energy range. Similarly, the high-energy tail ofg(u) is
corrected using the ‘‘true’’ free-energy difference and thef
distribution.

We examined the effect of the simulation lengthM since
it is a very important quantity affecting the error of the simu-
lation. Simulations withM51000, 2000, 5000, and 10 000
cycles were performed independently. After each simulation,
we have free-energy difference by both insertion and dele-
tion calculations. Simulations of each length were repeated
200 times independently. After all repeating simulations, the
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probability histogram of free-energy results was made and
the free-energy difference corresponding to the peak of the
histogram was obtained and used as the ‘‘most-likely’’
value. Based on the most-likely free-energy difference and
the true value, the most-likely inaccuracy is computed. In
accord with the development, we report our results as the
fractional error in the exponential ofDA instead ofDA di-
rectly. The most-likely inaccuracy observed from the simu-
lation is given as follows. For insertion calculation

dEins
s 5exp~2bDAsim!2exp~2bDAtrue!, ~25!

for deletion calculation

DEdel
s 5exp~1bDAdel!2exp~1bDAtrue!, ~26!

where the superscripts indicates the most-likely value ob-
served from simulations.

For the comparison we also computed the most-likely
inaccuracy according to the model. We first computed the
most-likely limit energies with thef andg distribution func-
tions obtained from the long simulation. The most-likely
lowest energy sampled in an insertion calculation,uf* , and
the highest energy sampled in a deletion calculation,ug* ,
were calculated using Eqs.~22! and~24!, respectively. Then,
using the discrete form of our model@Eqs.~17! and~18!#, the
most-likely inaccuracies are

dEins* 52 (
ui,uf*

f ~ui !exp~2bui ! ~27!

for insertion calculations and

dEdel* 52 (
ui.ug*

g~ui !exp~1bui ! ~28!

for deletion calculations. Note the discrete distribution func-
tions f (ui) andg(ui) are normalized.

We compare the inaccuracies observed from the simula-
tions @Eqs. ~25! and ~26!# and those from our most-likely
model@Eqs.~27! and~28!# to verify if the inaccuracy analy-
sis and model are valid.

IV. RESULTS AND DISCUSSION

The most-likely inaccuracies computed directly by the
simulation data and by the inaccuracy model for both inser-
tion and deletion calculations are presented in Fig. 5 as a
function of simulation lengthM. We report results for two
system temperatures: Fig. 5~a! for T50.9 and Fig. 5~b! for
T52.0. The state conditionT50.9 andr50.9 corresponds
to a LJ fluid located slightly above the liquid–solid coexist-
ence temperature.31

From Figs. 5~a! and 5~b!, we can see that the model
results agree with the simulation inaccuracies very well in
both cases. This gives us the confidence that the error analy-
sis conducted is appropriate. The difficulties of sampling the
complex important configuration space can be simply studied
by investigating the one-dimensional energy distribution
functions. The major error of the FEP calculations is due to
the poor sampling of the energy distribution wings.

In Fig. 5 there are more points worth noting. As we
expected, the free-energy errors for the insertion and deletion
calculations have opposite sign, and both decrease with the
increasing simulation lengthM. A longer simulation is able
to sample the configuration space better than a shorter simu-
lation, and therefore gives the estimation of the free-energy
difference with better statistics. From the model point of
view, in a longer simulation the limit energy is pushed fur-
ther away toward the end of the energy tail. For an infinite
simulation, the whole range of thef andg distributions will
be well sampled and the result will be exact. However, the
speed of error reduction over the simulation lengthM is not
the same for the insertion and deletion calculations. From
Fig. 5 we can see the error of the insertion calculation de-
creases faster than its deletion counterpart, with increasing
simulation length. It is more efficient to reduce the simula-
tion error by increasing the simulation length for insertion
calculations than deletion ones. We observed similar behav-
ior for the HS or simple three-state models28 and believe it is
common for many simulation situations. This behavior also
reveals the asymmetric character of the insertion and deletion
calculations. The magnitudes of the simulation errors by in-
sertion and deletion calculations are not the same, a point

FIG. 5. Comparison of the inaccuracy in the free-energy change, evaluated
by repeated simulations and by the model. Both the inaccuracy of insertion
~square! and deletion~circle! calculations are plotted as a function of simu-
lation lengthM, together with the model predictions~1 for insertion and3
for deletion!. T50.9 for ~a! and T52.0 for ~b!. In both cases the system
density is 0.9.
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which is clearly shown in Fig. 5. We find the insertion cal-
culation results in less error, or more reliable free-energy
estimation. One should not assume these two FEP calcula-
tions are symmetric only because the errors have different
sign.

It is worthwhile to consider how the superiority of inser-
tion impacts the design of multistage FEP methods. Multi-
stage methods13,21,32calculate the free energy between a ref-
erence and target by breaking the difference into smaller
parts. Thus

A12A05~A12AW!1~AW2A0!, ~29!

where theW subscript defines a system that in some way is
intermediate between the target and reference system. Given
the 0, 1, andW systems, there are four ways in which the
overall FEP calculation can be completed, differing in the
selection of the target and reference systems for the two sub-
calculations involved in computing the total difference. Two
are commonly known as umbrella sampling33 and Bennett’s
method,34 while the other two we have called13 staged inser-
tion and staged deletion, although these names are appropri-
ate only if S1,SW,S0 .

In previous work27 we showed that the intermediate
should be selected such that the entropy differencesS1

2SW and SW2S0 are equal. This result anticipated the
present work in that it assumed that both FEP calculations
would be computed in the insertion direction, and that in
particularS1,SW,S0 . Such a selection of the intermediate
system is possible only if the important configurations of the
target and reference systems are related as described in Fig.
6~a!. In our limited experience, examining Widom-type FEP
calculations involving the insertion~or partial insertion! of a
single molecule, this has always been the case.

For other perturbations this relationship may not hold,
and it is important then to be especially careful in the formu-
lation of the intermediate system. In particular Bennett’s
method or umbrella sampling may be more appropriate stag-
ing schemes. The cases in which they are appropriate for use
are depicted in Figs. 6~b! and 6~c!. Umbrella sampling is
needed if there is virtually no overlap of the important con-
figurations of the target and reference systems. Then, theW
system must be selected to encompass both of them. Ben-
nett’s method can be applied if the systems have some over-
lap in their important regions of phase space. Bennett’s
method is special in that theW system is never used as a
reference in one of the substage FEP calculations. As shown
by Bennett, this feature permits some optimization to be ap-
plied in selecting the intermediate. Interestingly, if the target
and reference are related as shown in Fig. 1, with the target
forming a complete subset of the reference, then~at least for
hard spheres! the optimization procedure yields an interme-
diate that is identical to the target, i.e., the deletion stage of
the calculation is eliminated and the method reduces to a
single-stage FEP calculation. Staged insertion is then the
method of choice. Higher-order staging algorithms could be
developed to extend these ideas.

V. CONCLUSIONS

We are strongly of the opinion that FEP calculations
should be performed only in the insertion direction, i.e., the
simulation should sample the system of larger entropy, and
compute the free-energy difference for a perturbation to a
target system of smaller entropy. This outcome follows as a
consequence of a more important and more restrictive crite-
rion for obtaining accurate measurements in FEP calcula-
tions. It is necessary that the configurations important to the
target system form a subset of the configurations important
to the reference. This situation is depicted in Fig. 1. For
small, localized perturbations such as those employed in
chemical-potential calculations, the more restrictive condi-
tion is usually satisfied by the less restrictive condition that
looks only at the entropy difference. In more complex cases,
where the target cannot be selected such that its important
configurations are entirely a subset of the important configu-

FIG. 6. Appropriate staging strategy in different situations according to the
overlap of the important phase space. A two-stage FEP calculation is used as
an example, where three systems, the reference 0, the target 1, and the
intermediateW are involved. In the phase-space diagrams, these three sys-
tems are represented as the partial shaded, black, and white regions, respec-
tively. For FEP calculations containing more stages, the same idea can be
applied. The relationship of the important configurations of three systems is
schematically shown. Information about choosing an appropriate intermedi-
ate system is described in the text for each case.~a! The important configu-
rations of the target system sits inside that of the reference system com-
pletely. A staged insertion is the best choice for an accurate result.~b! No
overlap region of the important configurations of the reference and target.
Umbrella sampling is the most suitable technique.~c! The important con-
figurations of the target and reference are partially overlapped. Bennett’s
method is appropriate for FEP calculations.
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rations of the reference, it is necessary to apply a staging
approach to the free-energy calculation. However, the design
of the staging method should still be guided by the criteria
outlined here.
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