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We examine issues involved in applying and interpreting free-energy perturb&&BR)
calculations in molecular simulation. We focus in particular on the accuracy of these calculations,
and how the accuracy differs when the FEP is performed in one or the other direction between two
systems. We argue that the commonly applied heuristic, indicating a simple average of results taken
for the two directions, is poorly conceived. Instead, we argue that the best way to proceed is to
conduct the FEP calculation in one direction, namely that in which the entropy of the target is less
than the entropy of the reference. We analyze the behavior of FEP calculations in terms of the
perturbation-energy distribution functions, and present several routes to characterize the calculations
in terms of these distributions. We also provide prescriptions for the selection of an appropriate
multistage FEP scheme based on how the important phase-space regions of the target and reference
systems overlap one another. Z01 American Institute of Physic§DOI: 10.1063/1.1359181

I. INTRODUCTION known that the calculation in one direction typically overes-
timates the free-energy difference, while calculation in the
other direction underestimates it. What is not well appreci-
Ated is the asymmetry in thenagnitudeof the over- and

. nderestimations. Many researchers treat the errors in the
free-energy difference between two systems as an ensem

. o methods as being of the same magnitude and opposite
average performed on only one of them. The working €AY35in17-26 Therefore, a heuristic has emerged that the best
tion can usually be put in the form '

estimate of the free-energy difference should be taken as the
e AlA~ Ao = (g~ A1~ Vo)) (1)  average of the insertion and deletidiorward and reverge
free energies. This practice is wrong. It is the aim of this
The “0” and “1” subscripts indicate properties for the two work to highlight this misconception and present a means to
systems of interest is the Helmholtz free energy) is the  analyze the magnitude asymmetry.
configurational energy, anél=1/kT with k the Boltzmann’s The reliability of the FEP calculations has two facets,
constant and the absolute temperature. The angle bracketgepresenting therecisionandaccuracy respectively Preci-
indicate an ensemble average performed on the O systemsion describes reproducibility of the measurements, and can
which we call thereferencethe 1 system we call thearget  pe characterized by a variance statistic. In a previous $tudy
Either system of interest can be selected to be the refefye set up quantitative models to describe the precision of
ence, and thus the FEP calculation for a given pair of SySeEpP calculations, and showed that precision is closely re-
tems can be performed in either of two directions. If the|ated to the entropy difference between the reference and
systems differ in the presence of a single molecule, the FEParget systems. We applied our analysis to develop a pre-

two implementations are commonly known as the Widomgg|culations.

. . '7 . . . ) . ) ) .
insertior?”” and Widom deletiohmethods. In what follows The accuracyof a calculation is distinct from its preci-
we will present the idea that in all FEP calculations one Ofgjon_ |t indicates the correctness of the estimate, or how the
the directions can be considered uniquely as an “insertion"easurement result deviates from thee or exactvalue in
cglculaﬂon yvh|le the other represents a “deletlon,'” SO Werepeated measurements. Arguably, the accuracy of a result is
will adopt this terml_nology here to refer to the two directions y,,ch more important than its precision, yet it usually gets
of an FEP calculation. _ ~little attention. One reason is that in many situations the in-
Inprinciple, insertion and deletion methods yield 5ccyracy of an ensemble average is much less than its im-
equivalent results for the free-energy difference, but in pracpecision. However, this circumstance often does not hold
tice the calculated results differ systematicdlly® It is well ¢ FEp calculations, even in cases where other ensemble
averages are of good accuracy. Indeed, FEP results could be
dElectronic mail: kofke@eng.buffalo.edu in good precision but terrible accuracy. A simpknd ex-

Free-energy perturbatiodFEP is one of the most
widely used methods to compute free energies via molecul
simulation!™ A single-stage FEP calculatidryields the
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treme example is the deletion calculation of the chemicalis less than zero$;— Sy<0 (where the 1 and O subscripts

potential for the hard-sphef&lS) system. According to this indicate the target and reference systems, respectively, as

method the chemical potential is always zero whatever théliscussed in the IntroductienSimilarly, a generalized dele-

system condition. Obviously, this is a wrong ansv&xtcept tion calculation uses the system as the reference, and pro-

for zero density, but it has perfect reproducibility. Fortu- ceeds in a direction of increasing entro®;— Sy>0.

nately the result is so obviously wrong that no one would In a generalized insertion calculation we have

make the mistake of interpreting its good precision as good _

accuracy. But this situation is anomalous, and comes about exXp(— BAA) = (exp = fu)) )

because the hard-sphere system has only two possible enengfereu is the difference of configurational potential energy

levels (zero and infinity. Inaccuracy is much better dis- U(r™) between theL and H systems, i.e.,u=U_(r")

guised in systems only slightly more realistic than the hard—Uy(r"), the energy change encountered in a trial sam-

sphere model, even one having only three energy I&fels. pling. For convenience, we simply cail“potential energy”

Poor understanding of the accuracy in realistic systems lead¥ “energy” in the following, but one should keep in mind

to misinterpretations of simulation results and misapplicathat it really means the potential energy change during the

tions of simulation methodologies. perturbation. The momentum contributions to the Hamil-
In contrast to precision, where the block-average varitonian are ignored in this study, assuming they are the same

ance provides a good measure, there is no simple way tim both systems. The subscripted angle bracket$, indi-

assess the accuracy of an FEP calculation. In this study weate the canonical-ensemble average sampled according to

address this problem, and examine the inaccuracy in the FEfhe Hamiltonian for the higher-entropy system. Similarly, the

calculations as a function of the simulation length and basidree-energy difference in a generalized deletion calculation is

characteristics of the target and reference systems. We angiven by

lyze the source of the simulation error and develop the meth- _

odology and models to characterize it using energy distribu- EXP(+ BAA) = (exp(+BW). @

tion functions. We also further study the asymmetry behaviofNote that Eqs(2) and(3) are equivalent, as shown by Shing

of the FEP calculations and correct some related misconce@nd Gubbin*in the context of the chemical potential cal-

tions. In the next paper of this series we apply this underculation.

standing to develop an easy-to-use heuristic that gauges the

inaccuracy of insertion FEP calculations. B. Entropy and configuration space

~ We present in Sec. Il the analysis and modeling of the  The reference and target systems in an FEP calculation
inaccuracy. In Sec. lll we describe simulations used to verifyspare the same phase space, but the important regions of
the inaccuracy model and heuristic. Simulation results anghase space—those that contribute most to their respective
discussions are given in Sec. 1V, and concluding remarks IBartition functions—may differ between the two systems.

Sec. V. The entropy of a system is closely related to the size of the
important region of phase space. The “important region”
Il. BACKGROUND AND THEORY could be defined, for example, by considering the energy-

. . . ) distribution functionP(U)
A. Generalized insertion and deletion

Our previous studié¢d!*2"28show that the entropy dif- P(U)= iQ(U)e*'gu, (4)
ference between the reference and target systems is an im- Q
portant quantity in determining both the accuracy and preciwhereQ and() are the canonical and microcanonical parti-
sion of FEP calculations. Therefore, it is convenient totion functions, respectively. We could define a threshold
identify the FEP systems according to their entropy. In ouvalue P* for P(U), such that an integral over only those
study, the higher-entropy system is denadteend the lower- energiesU that have P(U) above the thresholdP(U)
entropy one isL. We define the difference of a quantity >P*] would yield some substantial fractiqe.g., 99% of
between two systems a&)X—(H). For example, the free- the integral taken instead over all energies. Then, any con-
energy, potential-energy, and entropy differences are defindiburation rN having an energyJ (rV) such thatP[U(rV)]
as AA=A —Ay, AU=U —-U,, and AS=S —S,, re- >P* would be considered an “important configuration.”
spectively; by definitionA S<0. Note that a configuration may be important if it has a low

In a Widom insertion calculation for the chemical poten- (large negativeenergy, or if it is one of many configurations
tial, the reference system can be viewed as one in which th@arge ()) having a nonprohibitive energy.
inserted molecule moves around without interference from In the following analysis, we will consider FEP calcula-
any of the other molecules in the system. The extra “freetions between systems in which the set of important configu-
dom” available to this molecule accords the reference with aations for the low-entropy systefdesignated’|) forms a
higher entropy than the target. Correspondingly, we definevholly contained subset of the important configurations
generalized insertion and deletion directions for any FEP calfI'y) of the high-entropy systeni:, CI'y, as shown in Fig.
culation based on the sign of entropy difference along thel. This is the case, for example, for systems of hard spheres
perturbation direction. We call an FEP calculation a generin which one sphere if system or is not(H systen inter-
alized insertion if theH system is used as the reference,acting with the others. It is very likely that this situati@re.,
where the entropy difference along the perturbation directiod’, CI'y) holds for other molecule-insertion system pairs in-
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f(u)exp(BAA)=g(u)exp(Bu). )

The difference in the ensemble-averaged energies be-
tween theL andH systems is given as a derivative of the
free-energy differenceAU=9(BAA)/dB. With Egs. (5)—

(7) the result can be expressed in terms of the energy distri-
butions and their temperature derivatives

alnf(u)
U AU= f dufu— T (u)
FIG. 1. Schematic diagram of phase space and important configurations in
an FEP calculation. The shaded region represents the important configura- B I dIn g(u) f 8
tions for the high entropy systeni’(;). The white region insidéand part B uu JB (u). ®

of) I'y is the important configurations for the low-entropy systém, The
significant feature of this diagram IS, is completely insidd’y . In real ~ These temperature derivatives can in turn be interpreted via
systems the shapes of thikandL regions are vastly more complex than the fluctuation formulas

simple two-dimensional representations presented here.

dlnf(u Uyo
aﬂ( o <<§>H>”—<UH>H , ©
volving more realistic and complex potentials. In the event
that the important regions do not relate this way, it is un-  dIng(u) (U é),
likely that FEP can be made effective without setting up ap - (&), (U], (10

stages that break the calculation into pieces involving pairs )
of systems that do follow the relatidh, CT'y,. We discuss where the angle bracl_<et:_; represent an ensemble average in
this matter further in the Discussion section below. the H or L system as indicated, arld is the energy in the
The configurations il that do not lie inl', fall out- corr(_aspondmg system; als@, is the _Dlrac delta function
side because their energy is greater than the energies of t@Plied to the energy change for which the ensemble av-
configurations i, . Thus, we expect that configurations in €r@ge then gives the distribution functiorigu) =(5)y and
I'y will exhibit energy differencesi that are typically posi- g(u)=(). -
tive and large. The primary exceptions are those configura- 1"ese results show that the energy change cannot be
tions that lie also i’ , where the configurations will tend ©btained from knowledge of the distribution functions at
to have a value ofl that is zero or negative. Note that this only one tempera?ure. But, it is interesting to consider the
characterization of the value dfin ', andI", is more of an ~ degree of correlation between the energy changed the
expectation than a rule; deviations from this description, perconfigurational energyl in the H andL systems. According
haps significant ones, might be found in particular systemd® the formulas above, correlations in thesystem are rel-

Much of what follows does not rely on this characterization,vant for ranges ofi whereg(u) is non-negligible, i.e., for
but it can provide guidance to the intuition. configurations inl"; . While these configurations have a fa-

vorable u, it is not likely that the energyJy will differ

markedly or systematically from the averagé, )y in this
C. Energy distributions region. For particle insertion, these are configurations in
We can rewrite the ensemble averages in Egsand which a hole has opened up to permlt the insertion of a
molecule. Except for very high-density systems, opening

(3) in terms of a one-dimensional integral weighted by the b 2 hol q b ted with 4 | h in th
distribution of energy changes encountered in a simulation;Uc @ Nole nee not be associated with a large change in the

as proposed by Shing and GubbfBollowing their nota-  SNer9Uw - In contrast, the correlations betweeandU, in
tion, we definef (u) andg(u) as the distribution functions of e L system, over the regiod’y where f(u) is non-

the potential energy change encountered in a simulation pegligible, Wi” be signiﬂca.nt. The energy—changés large
using insertion methocH system as the referericand de- in these regions, which indicates that will also be system-

letion method(L system referengerespectively. Then, Eq. at|c_ally_large. From th_ese arguments we a”t'c'p"?“e t.haﬁthe
(2) becomes derivative of Inf(u) will be small, while the derivative of

Ing(u) will be non-negligible. Thus, from Eq@8) we can

_ _ B approximate the energy change as a sinplategral, but
exp—BAA) J duexp(—pu)t(u), ® cannot express it in terms of théntegral
where the integral goes from~ to +o°. Likewise, the de-
letion free-energy formula is given by AU”J ug(u)du. (11
exp(+ BAA) = J duexg +Bu)g(u). (6)  Assuming this result s valid, then the entropy difference can
also be expressed in terms of thandg distributions; thus

Note that bothf(u) andg(u) are normalized; also, physical

considerations place a lower bound on the energy for which AS%I g(w)In[f(u)/g(u)]du, (12
g(u) is nonzero. A useful relation between thandg dis-

tributions i$+° which, again, is by definition less than zero.
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FIG. 2. A plot of typicalf and g distributions as functions of potential S deletion
energy change. Both distributions are normalized. The associated Boltz- 8o inaccuracy
mann factor integrands for tHfeand g distributions are also schematically 2
shown in the plot, as the dashed curves. ©
L
Z N

Ur Ug u
Figure 2 shows the typical shape of th@) andg(u) o S .
distributions, together with the Boltzmann factor that is av-'C: 3- Depiction of the probability distributiorirepresentingf or g),

. . . sampled region, and the relative inaccuracy of the FEP calculatians.
erag.ed.to obtain the free-'energy d'ffere.nce' By |00|§Iﬂg aF th%haded regionfthe tails of distributionp(u)] are those that have not been
plot it is clear that the important region for the insertion well sampled during a finite length simulation, while the region in between
calculation is the low-energy region, while the high-energyis _perf_ectl_y sampled(b) the rglative inaccuracy of the insertigjrﬁ)_ ca!cu-
region is critical to the deletion calculation. These regiongation is given by the area with energy less tharunder theg distribution,

d to the tails of theor g distributions. Thev are while the relative inaccuracy of the deletl@ _calc_ulatlon is given by the

corréspon . : . g e Yy ) area with energy larger than, under thef distribution.

prone to poor sampling in a finite length simulation since

they correspond to configurations to be sampled with low

probability. So, in terms of theandg distribution functions,

the error in the free-energy calculation comes from the poor oxact |12 uz

sampling of the distribution tails, more explicitly, the low X= 7wD(U)F(u)du+ . p(u)F(u)du

energy tail for insertion calculation and the high energy tail

for deletion calculation. e

+j p(u)F(u)du. (14
uz

D. Modeling inaccuracy .

_ _ _ As part of our model development, we now assume that in a

Let us generalize the problem in the following way. Sup-simulationu is sampled perfectly according f(u) for u

pose a quantit) is an average of functiof (u) according  petweenu; andu,. Then, theX measured in the simulation
to weighting distributionp(u), i.e., will be

X= Jiwp(u)F(U)du. (13 XSim— fuzp(u)F(u)du, 15

In connecting Eq.(13) to FEP calculations, the average and the simulation error iiX is given by the difference be-
quantity X is either exp{- BAA) for the insertion calculation fyeenXs™ and xexact

or exp(+BAA) for the deletion calculationp(u) is the

weight function, either f(u) or g(u); and F(u) is X = XIm— xerect

exp(—Bu) or exp(* Bu) for the insertion and deletion calcu- Uy too

lations, respectively. During the simulation we samgplac- = —J' p(u)F(u)du—f p(u)F(u)du. (16)
cording to p(u) and finally measure the averagéas a o 42

sample average df(u). It is clear that the inaccuracy or Now we return specifically to the FEP calculations. For

error in the averag¥ depends on how wefl(u) is sampled. the insertion calculation, the high-energy term in Etp)

For a long but finite length simulation, the high-probability has an extremely small value and therefore can be dropped.
region of p(u) will be well sampled, while the low- Similarly, the low-energy term in Eq(16) for a deletion
probability regions, or the wings of the distribution, are gen-calculation can be ignored. We then can write the inaccuracy
erally not well sampled. This situation is shown schemati-of insertion and deletion calculations as follows:

cally in Fig. 3a), where the shaded regions indicate energies -

that are not well sampled. For any given sample, one can OEins=eXp(~ BAARS) — expl — BAAT)
identify energy valuesu; and u,, such thatu is never u

sampled for the regions<«,u,) and (u,,+«). Each such = —f
energy is referred to aslamit energyin the following. The

exactX is given by the averaging over whole rangeuof and

ff(u)exp(—,Bu)du 17
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SE ge=eXpl + BAAZY) — exp( + BAAEC) ®
+ oo g
=—j g(u)exp(+ Bu)du, (18)
Ug
whereus is the lowestlimit) energy sampled in an insertion f
calculation andug is the highestlimit) energy sampled in a
deletion calculation. We can see in E@$7) and (18) that
the inaccuracy of FEP calculations is given by the contribu-
tions of the important configurations that are never sampled.
It is helpful to look at the relative errordg) of the FEP (b)
calculations. Knowing Eq:7), the relationship betwedrand .
L. inaccuracy of
g distributions, we have insertion
exp(— BAATT) — exp( — BAASXCY inaccuracy
€ins= exac of deletion
exp — BAADA
Ug
=—f g(u)du (19
and ()
expl(+ BAAZY) — expl + BAAZECY
5edeI= GXK + BAAexac5
+ o
:—f f(u)du. (20
Ug
R

Note that for small errors, the magnitude of the relative error

in exp(xAA) is roughly equal to the magnitude of the abso-rG. 4. Asymmetry in accuracy of FEP calculations. The inaccuracy of the

lute error inAA itself. insertion(deletion calculation is given by the shadow area underdke)
Equations(19) and (20) tell us that the relative inaccu- distribution. The size of the area is related to the length of simulation, the

. - - L . overlap level of the energy distributions, and the breadth of each distribu-
racy of the insertiorif) calculation is given by the area with tion. This series of plots show how the inaccuracy of both calculations

energy less tham; under theg distribution, while the rela-  changes as increasing the simulation length increases the degree of overlap
tive inaccuracy of the deletiofy) calculation is given by the of distributions. The insertion calculation, which typically samples the

area with energy Iarger thafb under thef distribution. This (tj)r(l)a(_jer energy _distributio(lf), will give less simulation error than the
relation is depicted in Fig.(®). eletion calculation.

One may note that the relative errors of free-energy cal-
culation, as shown by Eq$19) and (20), are always less
than or equal to zero since the area undef ang curve is
non-negative. This implies thatAjil>AA® and AAZ]  error is small. In the extreme cases of no oveflig. 4a)],
<AA®® or in other words, for an insertion calculation the both calculations give poor results, while for complete over-
free-energy difference is overestimated, and for a deletiomp both give equally good results. It is in the intermediate
calculation it is underestimated. This analysis agrees with th@ase that the asymmetry of the methods emerges. For some
common understanding and observation of FEP calculationgatermediate degree of overlap, the better result is obtained
However, this common understanding often includes a mispy sampling the distribution that is broader. As the amount
conception in the magnitude of the accuracy of the FEP calpt sampling is increased, and the limit energies move further
culations. The prevalent view is that both calculations argnig the wings of the distributions, the broader distribution

equally wrong, and the best result is obtained by splitting they; encompass the narrower distribution first, meaning that
d|ffe_renc_e. E_quaﬂons(lQ) and (2.0) do n<_)t explicitly sampling on the broader distribution will provide a result of
provide information as to the magnitude of inaccuracy. To reater accuracjFigs. 4b) and 40)]

further look at the asymmetry problem, we need to StUdﬁ This analysis raises an obvious question: Which distri-

some properties of theandg distribution functions. bution is wider, thef (insertion distribution or theg (dele-

tion) distribution? Thef distribution describes sampling of

the system having the larger entropy, so it is tempting to
Asymmetry in the FEP calculation is easily understoodconclude that it is always the wider distribution. For the Wi-

in the context of the preceding analysis by considering theglom calculation of the chemical potential, this is indeed the

overlap of thef andg distributions. If the upper limit energy case. However, we are unable to prove this as a general

of the g distribution lies well above the bulk of thedistri-  result, so at present we leave it as a reasonable speculation

bution, then the error in deletion is small; likewise, if the indicating that insertion FEP calculations are inherently more

lower limit energy off lies below the bulk ofj, the insertion  accurate than corresponding deletion calculations.

E. Asymmetry of FEP calculations
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F. Most-likely analysis simulation lengthM, knowing the energy distribution func-

- ; tionsf andg. Insertion of these limit-energy values into Egs.
The next step in our model development is the formula- ) . )
tion of a means for estimating the limit energies that govern(17) [or (19)] and (18) [or (20)] yields the most-likely inac-

the inaccuracy of the FEP calculations. What inaccuracy caffuracy of the corresponding FEP calculations.
be expected for a simulation with given lendif? Assuming
prior knowledge of thé¢ andg distributions, it is possible to
have a general answer to this question. It is clear from the As described in Sec. Il D, our inaccuracy model agrees
foregoing inaccuracy model that the magnitude of the errowith some common qualitative observations and understand-
depends on the value of limit energy (for insertion calcu- ing of the FEP error. Here, we conduct simulation tests to
lation) or u; (for deletion calculation Once we have the assess quantitatively the ability of the model to describe the
limit energy, we know the inaccuracy of the calculation. So,inaccuracy of FEP calculations. We performed Monte Carlo
the question becomes what is the limit energy for a giversimulation of simple Lennard-JonékJ) fluids in theNVT
simulation? ensemble. We consider a reduced density of 8llunits are

The limit energyu; or ug can be found easily in a simu- made dimensionless by the LJ si@®) and energy(e) pa-
lation. Of course, for a given simulation lengthwe would  rameter$ and two reduced temperatures: 0.9 and 2.0. The
find different values ofu; or uy in different independent perturbation systems are defined as follows: “systelfh
simulation runs. However, a distribution of limit energies contains 107 particles interacting according to the LJ poten-
P(u) can be defined to describe the limit energies observetlal (i.e., it has 107 LJ particlesand one particle that inter-
in repeated runs of the same lendth This distribution will  acts with the others according to the hard-sphere potential
exhibit some maximum corresponding to the most likelywith diameter 0.8. The LJ potential is truncated at a separa-
limit energyu* to be observed in any simulation. Then, we tion of 2.5, and no long-range correction is included. “Sys-
identify the most likely free energy to be that obtained bytemL” has 108 LJ particles. The insertion calculation§
integrating Eq.(17) or (18) to this most likely limit energy. <0) corresponds to the perturbation direction from system
Accordingly, we define the inaccuracy as the difference beH to L, i.e., the reference is systehh The trial insertion
tween the most-likely free-energy outcome and the trugrocess involves the identity change of the HS to a LJ par-
value. Now, the key quantities needed are the probabilityicle and the growth of the particle size. The deletion calcu-
function P(u) and, from this, the most-likely limit energy, lation uses syster as the reference and involves the change
u*. of a LJ particle to a hard sphere. Both insertion and deletion

First, let us look at these quantities for an insertion cal-FEP calculations were performed during the simulation. This
culation. The probability density that is the lowest energy introduces a small approximation to the calculation, in that
sampled in a simulation witM insertion trials is given by  the deletion calculation should be performed for 108 LJ
M—1 spheres, but separate tests show that the error introduced by

(21)  this consideration is negligible.

A test of the inaccuracy model requires as input the ex-
act energy distribution functions. These we obtained by mak-
ing histograms of the perturbation energy encountered in a
long simulation with 5M cycleswhere each cycle comprises
108 attempts of MC particle displacement followed by one
trial of insertion or deletion measuremgnThe true free-

: * . _ energy difference is also needed to gauge the inaccuracy of
ing P(u), and th.usuf should satlsfy{ﬂP(u)]/&ulu:u?.—O, the FEP calculations. We obtained this value using the rela-
or (more conveniently[ 7 In P(u)]/oul,—x =0. After straight-  tjoship described in Eq7), or more explicitly, expAA)
forward derivation starting with Eq21), we get(for large  =exp(Bu)g(u)/f(u), applied to the measurddandg distribu-

lll. VERIFICATION AND SIMULATION TESTS

P(uf>=f(uf)“ “tudu

ug

The right-hand side of Eq21) is the product of the prob-
ability density thatu=u; is sampled exactly once, and the
probability that for all other i1 —1) samplings the energy
value is betweeni; and infinity (u<u; is never sampled
The most-likely limit energyf is obtained by maximiz-

M) tions over their region of overlap. Particularly important to
aInf(u) the analysis are the low-energy tail oélistribution and the
- =Mf(uf). (22) high-energy tail ofg distribution, which typically have poor

u u=u¥ statistics. To improve them, we correct the low-energy tail of
o ) ] f(u) using the information of the “true” exgAA) just ob-
Similarly, for the deletion calculation we have tained, along withg(u) which has very good statistics in the
Ug M-1 low-energy range. Similarly, the high-energy tail @fu) is
P(ug) =9(ug) f g(uw)du (23 corrected using the “true” free-energy difference and the
o distribution.
Then the most-likely limit energyfg* is We examined the effect of the simulation lenghsince

it is a very important quantity affecting the error of the simu-

— _Mg(u*). (24) lation. Simulations withM =1000, 2000, 5000, and. 10 OQO
Uy g cycles were performed independently. After each simulation,
9 we have free-energy difference by both insertion and dele-
Equations(22) and (24) indicate the most-likely limit tion calculations. Simulations of each length were repeated
energies for the insertion and deletion FEP calculations witl200 times independently. After all repeating simulations, the

alng(u)
au
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the free-energy difference corresponding to the peak of the @

histogram was obtained and used as the “most-likely” g 2
value. Based on the most-likely free-energy difference andE— \ﬁ]\ﬁj

the true value, the most-likely inaccuracy is computed. In © g4 )
accord with the development, we report our results as the

probability histogram of free-energy results was made and E\‘h
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fractional error in the exponential @A instead ofAA di- g 2 5
rectly. The most-likely inaccuracy observed from the simu- 3
lation is given as follows. For insertion calculation ;é‘ . .
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where the superscrifg indicates the most-likely value ob-
served from simulations.

For the comparison we also computed the most-likely M (b)
inaccuracy according to the model. We first computed the <€ 0+ h Bl
most-likely limit energies with thé andg distribution func- é]s_
tions obtained from the long simulation. The most-likely S
lowest energy sampled in an insertion calculatiof, and
the highest energy sampled in a deletion calculatla)gn
were calculated using Eq&2) and(24), respectively. Then,
using the discrete form of our modétgs.(17) and(18)], the
most-likely inaccuracies are
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FIG. 5. Comparison of the inaccuracy in the free-energy change, evaluated
by repeated simulations and by the model. Both the inaccuracy of insertion
5E§e|= - 2 g(Ui)eXF( + Bui) (28) (squarg and deletion(circle) calculations are plotted as a function of simu-
ui>u; lation lengthM, together with the model predictionis- for insertion andx
for deletion. T=0.9 for (@) and T=2.0 for (b). In both cases the system
for deletion calculations. Note the discrete distribution func-density is 0.9.
tions f(u;) andg(u;) are normalized.

We compare the inaccuracies observed from the simula-

tions [Egs. (25) and (26)] and those from our most-likely In Fig. 5 there are more points worth noting. As we
model[Egs.(27) and(28)] to verify if the inaccuracy analy-  expected, the free-energy errors for the insertion and deletion
sis and model are valid. calculations have opposite sign, and both decrease with the

increasing simulation lengthl. A longer simulation is able

to sample the configuration space better than a shorter simu-
IV. RESULTS AND DISCUSSION lation, and therefore gives the estimation of the free-energy

difference with better statistics. From the model point of

The most-likely inaccuracies computed directly by theview, in a longer simulation the limit energy is pushed fur-
simulation data and by the inaccuracy model for both inserther away toward the end of the energy tail. For an infinite
tion and deletion calculations are presented in Fig. 5 as aimulation, the whole range of tfeand g distributions will
function of simulation lengtiM. We report results for two be well sampled and the result will be exact. However, the
system temperatures: Fig(ab for T=0.9 and Fig. &) for  speed of error reduction over the simulation leniths not
T=2.0. The state conditiom=0.9 andp=0.9 corresponds the same for the insertion and deletion calculations. From
to a LJ fluid located slightly above the liquid—solid coexist- Fig. 5 we can see the error of the insertion calculation de-
ence temperatur®. creases faster than its deletion counterpart, with increasing
From Figs. %a) and 8b), we can see that the model simulation length. It is more efficient to reduce the simula-

results agree with the simulation inaccuracies very well intion error by increasing the simulation length for insertion
both cases. This gives us the confidence that the error analgalculations than deletion ones. We observed similar behav-
sis conducted is appropriate. The difficulties of sampling thdor for the HS or simple three-state modéland believe it is
complex important configuration space can be simply studiedommon for many simulation situations. This behavior also
by investigating the one-dimensional energy distributionreveals the asymmetric character of the insertion and deletion
functions. The major error of the FEP calculations is due tacalculations. The magnitudes of the simulation errors by in-
the poor sampling of the energy distribution wings. sertion and deletion calculations are not the same, a point
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which is clearly shown in Fig. 5. We find the insertion cal-
culation results in less error, or more reliable free-energy
estimation. One should not assume these two FEP calcula-
tions are symmetric only because the errors have different
sign.

It is worthwhile to consider how the superiority of inser-
tion impacts the design of multistage FEP methods. Multi-
stage methodd?*calculate the free energy between a ref-
erence and target by breaking the difference into smaller
parts. Thus

A1~ A= (A1—Aw) T (Aw—Ao), (29

where theW subscript defines a system that in some way is
intermediate between the target and reference system. Given
the 0, 1, andW systems, there are four ways in which the
overall FEP calculation can be completed, differing in the
selection of the target and reference systems for the two sub-
calculations involved in computing the total difference. Two
are commonly known as umbrella sampfihgnd Bennett's
method®* while the other two we have callttistaged inser-

tion and staged deletion, although these names are appropri-
ate only if S;<SK<S,.

In previous work’ we showed that the intermediate
should be selected such that the entropy differenses
—Sw and Sy—S, are equal. This result anticipated the riG. 6. Appropriate staging strategy in different situations according to the
present work in that it assumed that both FEP calculationsverlap of the important phase space. A two-stage FEP calculation is used as
would be Computed in the insertion direction, and that in@" example, where three systems, the reference 0, the target 1, and the

. . - . intermediateW are involved. In the phase-space diagrams, these three sys-
par“CUIarSl<SW<SO' Such a selection of the intermediate tems are represented as the partial shaded, black, and white regions, respec-

system is possible only if the important configurations of thesively. For FEP calculations containing more stages, the same idea can be
target and reference systems are related as described in Fagplied. The relationship of the important configurations of three systems is
6(a). In our limited experience, examining Widom-type FEP schematically shown. Information about choosing an appropriate intermedi-

| ' lati . Vi he i ” ial i . f ate system is described in the text for each cé@elhe important configu-
C?‘ culations invo Vlng the insertiofor partia insertioh of a rations of the target system sits inside that of the reference system com-
single molecule, this has always been the case. pletely. A staged insertion is the best choice for an accurate résumo

For other perturbations this relationship may not hold,overlap region of the important configurations of the reference and target.

and it is important then to be especially careful in the formu_UmbreIIa sampling is the most suitable techniq(®.The important con-

. . . . , figurations of the target and reference are partially overlapped. Bennett's
lation of the mtermedlate_ system. In particular Bennett'Smethod is appropriate for FEP calculations.
method or umbrella sampling may be more appropriate stag-
ing schemes. The cases in which they are appropriate for use
are depllcted |n.F|g_s. () and &c). Umbrella _samplmg IS\, CONCLUSIONS
needed if there is virtually no overlap of the important con-
figurations of the target and reference systems. ThenW\the We are strongly of the opinion that FEP calculations
system must be selected to encompass both of them. Beshould be performed only in the insertion direction, i.e., the
nett's method can be applied if the systems have some ovesimulation should sample the system of larger entropy, and
lap in their important regions of phase space. Bennett'sompute the free-energy difference for a perturbation to a
method is special in that the/ system is never used as a target system of smaller entropy. This outcome follows as a
reference in one of the substage FEP calculations. As showsonsequence of a more important and more restrictive crite-
by Bennett, this feature permits some optimization to be aprion for obtaining accurate measurements in FEP calcula-
plied in selecting the intermediate. Interestingly, if the targettions. It is necessary that the configurations important to the
and reference are related as shown in Fig. 1, with the targearget system form a subset of the configurations important
forming a complete subset of the reference, ttareast for to the reference. This situation is depicted in Fig. 1. For
hard spheresthe optimization procedure yields an interme- small, localized perturbations such as those employed in
diate that is identical to the target, i.e., the deletion stage ofhemical-potential calculations, the more restrictive condi-
the calculation is eliminated and the method reduces to &on is usually satisfied by the less restrictive condition that
single-stage FEP calculation. Staged insertion is then thoks only at the entropy difference. In more complex cases,
method of choice. Higher-order staging algorithms could bevhere the target cannot be selected such that its important
developed to extend these ideas. configurations are entirely a subset of the important configu-
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rations of the reference, it is necessary to apply a staginéD. A. Kofke and P. T. Cummings, Mol. Phy82(6), 973 (1997.
approach to the free-energy calculation. However, the desighD. A. Kofke and P. T. Cummings, Fluid Phase Equilibt0, 41 (1998.

of the staging method should still be guided by the criteri
outlined here.
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