Statistical Mechanical Ensembles’

1. Microscopic Origin of Entropy

A common definition of entropy from a macroscopic thermodynamic viewpoint is
AS=Q™/T, where Q™" is the amount of heat exchanged at temperature T between
a system and its environment. But what is the origin of entropy in the microscopic,
molecular world? Qualitatively, we expect that irreversible processes (which re-
sult in an increase in total entropy) also increase the degree of “disorder” in a sys-
tem. It turns out that a quantitative measure of disorder, specifically the number of
microscopic states Q available to a system at a given internal energy U and for
specified number of molecules (or moles) N and volume V, can be quantitatively
linked to the entropy. A distinct microscopic state (microstate) is defined by all
microscopic degrees of freedom - e.g. positions and velocities of molecules in a
gas. A set of microstates with specified common properties (e.g. number of parti-
cles N, volume V and energy U) defines an ensemble. The expression of S in terms of
microstates is provided by the famous 1872 entropy formula of Ludwig Boltz-
mann,

S=k,InQ(N,V,U) (1)

Boltzmann’s entropy formula is the foundation of statistical mechanics, con-
necting macroscopic and microscopic points of view. It allows calculations of mac-
roscopic thermodynamic properties by determining properties of microscopic
configurations. The constant kg is called Boltzmann’s constant; it is the ratio of the
ideal-gas constant to Avogadro’s number, or equivalently the gas constant on a per
molecule basis: kg = R/ N, =1.38065-10-23 ] /K.

The concept of microstates arises naturally in quantum mechanics, but can be also
introduced in classical systems, if positions and velocities can be grouped so that,
when their values differ less than some selected (but arbitrary) small value, then
they are considered to be equal. This quantization effect also arises naturally in
computations, which are performed with a finite numerical accuracy, so that two
quantities cannot differ by less than the machine precision.

t Draft material from “Statistical Thermodynamics” © 2014, A. Z. Panagiotopoulos




[\

(=]

To illustrate the concept
of counting microstates, we + [ ] [ )
will use the simple system + ®
shown in Fig. 1. In the gen-
eral case, it consists of N l | @ | ( AL J

slots, each containing a ball

that can be at energy levels Figure 1 A system of 10 spheres with 3 energy levels.

0, +1, +2, +3, ..., measured in

units of kgT,, where T, is a

reference temperature. The specific case of N=10 and 3 energy levels is shown in
the figure. The concept of discrete energy levels arises very naturally in quantum
mechanics. For this simple system, we can count states by using the combinatorial
formula giving the number of ways we can pick M specific distinguishable objects
out of N total objects:

N N N(N-1)-(N-M+1)
M ) M(N-M) 1.2--M

(2)

There is only 1 state with internal energy U =0. States with U=1 have one ball
at level +1 and the others at level 0, so for N =10, there are 10 such states. States
with energy U=2 may have 1 ball at +2 and the others at 0, or 2 balls at +1, so there

are:
101, 10=55
2

such states. We can similarly obtain Q(3)=220; Q(4)=715, Q(5)=2002, and so
on. Note that the number of microstates increases rapidly with the total energy of
the system. This is generally the case for most systems.

Now we are in a position to show that S defined microscopically from Eq. 1 has
the two key properties associated with the entropy of classical thermodynamics:

1. S is extensive: For two independent subsystems, A and B,
Snp =K In(Q, )=k, In(Q -Q )=k, InQ +k InQ,

The reason is that each microstate of system A can be combined with a
microstate of system B to give a microstate of the combined system. This is
clearly true for the simple system illustrated on the previous page. However,
when mixing two gases or liquids, we only get the above expression if we
assume that the particles in the systems are indistinguishable. If particles are
distinguishable, additional states are available to the combined system
resulting from the possibility of exchanging the “labels” of particles.
Although the indistinguishability of particles is really of quantum mechanical



origin, it was introduced ad hoc by Gibbs before the development of
quantum mechanics, in order to make entropy an extensive property.

2. S is maximized at equilibrium: For a system with internal constraints (e.g.
internal rigid walls or barriers to energy transfer), the number of possible
microstates is always smaller than the number of microstates after the
constraints are removed.

S(N,V,U) > S(N,V, U; internal constraints)

To demonstrate this second property, consider the box with particles of the
example above, and think of any constraint to the system at a given total
energy (say U=+2). An example of a "constraint” would be to have that the
first five slots have exactly 1 unit of energy. The number of microstates in
this case is (5x5=25), less than the 55 states available to the unconstrained
system.

One clear distinction between macroscopic and microscopic definitions of en-
tropy is that the former is physically meaningful only as a difference of entropy
between specified states, while the latter appears to provide a measure of absolute
entropy. This apparent discrepancy results from the inability of classical physics to
define uniquely when two nearby states (e.g. positions of a particle in free space
differing by a fraction of a nm) are sufficiently different to justify distinguishing
them from each other. Quantum mechanical methods, on the other hand, provide
precise ways to count states.

At low temperatures, the number of microstates available to any physical sys-
tem decreases rapidly. At the limit of absolute zero temperature, T—0, most sys-
tems adopt a unique “ground state” for which Q=1 = S=kglnQ =0. This is the basis
of the “Third Law of thermodynamics” postulated by Nerst in the early 1900’s. The
NIST Chemistry WebBook lists absolute entropies for pure components and chem-
ical elements in the thermochemistry data section. However, using entropy values
calculated with respect to an arbitrary reference state gives the same results as
absolute entropies for heat and work amounts.

Example 1 — Entropy of a lattice chain

A common model for polymers is the Flory lattice model, which represents chains
as “self-avoiding random walks” on a lattice (grid). Self-avoiding means that two
beads cannot occupy the same position on the lattice. When two non-bonded
beads occupy adjacent positions, they have energy of interaction equal to -kgT,,
where T, is a reference temperature. Obtain the number of microstates Q for a
two-dimensional square-lattice chain of 5 beads, as a function of the energy U of
the chain.

Fig. 2 shows the number of configurations for a square-lattice chain of 5 beads.
Without loss of generality, we have fixed the configuration of the first two beads of



the chain to be in the horizontal direction, with the second bead to the right of the
first. This reduces the total number of configurations by a factor of 4; such a multi-
plicative factor simply shifts the value of S obtained from Eq. 1 by a constant factor,
akin to the reference state for the entropy. The last bond is shown in multiple con-
figurations (arrows), along with their number and energy: 2x(—1) for the top left
image means there are 2 configurations, each of energy -1.

Overall, counting configurations of the same energy:
Q(U=0) = 3+2+2+3+2+2+3=17 ; Q(U=-1) = 2+1+1+1+1+2=8

The number of microscopic configurations and energy levels increases rapidly
with chain length. Theoretical and Monte Carlo computer simulation techniques
are used for determining the properties of models of this type for longer chains.
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Figure 2 Configurations for a two-dimensional chain of 5 beads

A key issue in statistical mechanics is the frequency of occurrence of different
microstates when the overall constraints of a thermodynamic system are specified.
A basic postulate, comparable in importance to the postulate about the existence
of equilibrium states in classical thermodynamics, is that all microstates of a sys-
tem at a given U, N and V are equally probable.

The basic postulate of statistical mechanics implies that the probability of any
microstate v, ?v , is the same as that of any other microstate in the constant N,V,U
ensemble:



1
P ) at constant N, Vand U (3)

v

From this postulate, we can now simply derive another famous expression, the
Gibbs entropy formula, by substituting Eq. 3 into Eq. 1:

S =<k 2 ZInZ, “

all micro-
states v

The Gibbs entropy formula can be shown to be valid even for systems not at
constant energy U, volume V, and number of particles N. This is in contrast to Eq. 1,
which is only valid at constant for microstates at constant U V and N. For example,
in § 3 we prove Eq. 4 for systems at constant N, V, and T.

2. Phase Space and Statistical Mechanical Ensembles

Boltzmann’s entropy formula links a macroscopic thermodynamic quantity, the
entropy, to microscopic attributes of a system at equilibrium. In this section, we
introduce many similar relationships for systems under constraints different than
(N,V,U), in a manner quite analogous to the introduction of fundamental equations
in different variables developed in the previous chapter through the Legendre
transform formalism.

The branch of physical science that aims to connect macroscopic properties
and microscopic information about a system is called Statistical Mechanics. The
central question in Statistical Mechanics can be phrased as follows: If particles (at-
oms, molecules, electrons, nuclei, or even living cells) obey certain microscopic
laws with specified interparticle interactions, what are the observable properties
of a macroscopic system containing a large number of such particles? Unlike classi-
cal thermodynamics, statistical mechanics does require input information on the
microscopic constitution of mater of interest, as well as the interactions active
among the microscopic building blocks. The advantage of the approach is that
quantitative predictions of macroscopic properties can then be obtained, rather
than simply relationships linking different properties to each other. Another im-
portant difference between statistical mechanics and macroscopic thermodynam-
ics is that fluctuations, which are absent by definition in the thermodynamics, can
be quantified and analyzed though the tools of statistical mechanics. Fluctuations
are temporary deviations of quantities such as the pressure or energy of a system
from their mean values, and are important in small systems - e.g. those studied by
computer simulations, or present in modern nanoscale electronic devices and bio-
logical organelles.

Gibbs
entropy
formula



Postulate I states that macroscopic systems at equilibrium can be fully characterized
by n+2 independent thermodynamic variables. For a 1-component isolated system,
these variables can always be selected to be the total mass N, total volume V and
total energy U. However, at the microscopic level, molecules are in constant motion.
Adopting temporarily a classical (rather than quantum mechanical) point of view,
we can describe this motion through the instantaneous positions and velocities of
the molecules. Examples of microscopic and macroscopic variables are given below
for N molecules of a one-component monoatomic gas obeying classical mechanics.

Microscopic variables (in 3 dimensions) | Macroscopic variables

3N position coordinates (x, y, z) 3 independent thermodynamic varia-
3N velocity components (ux, uy, u; ) bles, e.g, N, V,and U.

Given that N is of the order of Avogadro’s number [/Na=6.0221x1023 mol~!] for
macroscopic samples, there is a huge reduction in the number of variables re-
quired for a full description of a system when moving from the microscopic to the
macroscopic variables. Moreover, the microscopic variables are constantly chang-
ing with time, whereas for a system at equilibrium, all macroscopic thermodynam-
ic quantities are constant. The multidimensional space defined by the microscopic
variables of a system is called the phase space. This is somewhat confusing, given
that the word “phase” has a different meaning in classical thermodynamics - the
term was introduced by ]. Willard Gibbs, no stranger to the concept of macroscopic
phases.

In general, for a system with N molecules in 3 dimensions, phase space has 6N
independent variables

r".p") = (r.r,...r,.p,.P,..Py) (5)

where bold symbols indicate vectors, r; is the position and p; the momentum of the i-
the molecule, (p;=m; u;). The evolution of such a system in time is described by
Newton's equations of motion:

dr,
P
6
du, JU(r,r,,...r,) (6)
m—+t=—
bdt or,

where ‘U is the total potential energy, which includes interactions among molecules
and any external fields acting on the system.
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For a much simpler system, a one-dimensional
harmonic oscillator shown in Fig. 3, phase
space is two-dimensional, with coordinates the Z_%M_,
position and the momentum variables. In the I
absence of friction, the oscillator undergoes
harmonic motion, which can be represented as
a circle in phase space if position and
momentum are scaled appropriately. The 7
diameter of the circle depends on the total

energy (a constant of the motion), and the

oscillator moves around the circle at a constant

velocity. Figure 3 A one-dimensional har-
monic oscillator (top), and the cor-

A statistical mechanical ensemble is a collection responding phase space (bottom).

of all microstates of a system, consistent with

the constraints with which we characterize a system macroscopically. For example,
a collection of all possible states of N molecules of gas in the container of volume V
with a given total energy U is a statistical mechanical ensemble. For the frictionless
one-dimensional harmonic oscillator, the ensemble of states of constant energy is
the circular trajectory in position and momentum space shown in Fig. 3, bottom
panel.

3. Molecular Chaos and Ergodic Hypothesis

What causes the huge reduction from 3N time-
dependent coordinates needed to fully character-
ize a system at the molecular level to just a hand-
ful of time-independent thermodynamic variables
at the macroscopic level? The answer turns out to
be related to the chaotic behavior of systems with
many coupled degrees of freedom.

? P99

To illustrate this concept, one can perform a
thought experiment on the system shown in Fig.
4. In this system, a number of molecules of a gas Figure 4 A conceptual experi-
are given identical velocities along the horizontal ment in an isolated system.
coordinate, and are placed in an insulated box
with perfectly reflecting walls. Such a system would seem to violate the classical
thermodynamics postulate of eventually approaching an equilibrium state. Since
there is no initial momentum in the vertical direction, Newton’s equations of mo-
tion would suggest that the molecules will never hit the top wall, which will thus
experience zero pressure at all times, even though there is a finite density of gas in
the system. In statistical mechanical terms, microstates with non-zero vertical
momenta will never be populated in such a system. Of course, even tiny interac-
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Ergodic
hypothesis

tions between the molecules, or minor imperfections of the walls, will eventually
result in chaotic motion in all directions; thermodynamic equilibrium will be es-
tablished over times significantly greater than the interval between molecular col-
lisions.

Most molecular systems are able to “forget” their initial conditions and evolve
towards equilibrium states, by sampling all available phase space. Only non-
equilibrium (for example, glassy) systems violate this condition and have proper-
ties that depend on their history - such systems cannot be analyzed with the
methods of equilibrium thermodynamics or statistical mechanics.

At a molecular level, the statement equivalent to Postulate I of classical ther-
modynamics is the ergodic hypothesis. The statement is as follows.

For sufficiently long times, systems evolve through all microscopic states con-
sistent with the external and internal constraints imposed on them.

Experimental measurements on any macroscopic system are performed by ob-
serving it for a finite period of time, during which the system samples a very large
number of possible microstates. The ergodic hypothesis suggests that for “long
enough” times, the entire ensemble of microstates consistent with the microscopic
constraints on the system will be sampled. A schematic illustration of trajectories
of ergodic and non-ergodic systems in phase space is shown in Fig. 5 - a two-
dimensional representation of phase space is given, whereas we know that for re-
alistic systems phase space has a very large number of dimensions. The interior of
the shaded region is the phase space of the corresponding system. For the system

Figure 5 Schematic trajectories of ergodic (left) and non-ergodic (right) systems in phase
space.

on the left, there are two connected regions of phase space, so the trajectory even-
tually passes from one to the other and samples the whole of phase space. By con-
trast, for the system on the right, the two regions of phase space are disconnected,
so that the system cannot pass from one to the other. The system is non-ergodic.
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There is a strong link between time scales and constraints; a system observed
over a short time can appear to be isolated, while over longer times it may ex-
change energy and mass with its surroundings. Also, the “possible microstates”
depend on the time scales of interest, and on internal constraints - for example,
chemical reactions open up additional microstates, but can only occur over long
time scales, or in the presence of a catalyst.

For systems satisfying the ergodic hypothesis, experimental measurements
(performed by time averages) and statistical mechanical ensemble averages are
equivalent. Of course, we have not specified anything up to this point about the rel-
ative probabilities of specific states; the ergodic hypothesis just states that all states
will eventually be observed. A general property F can be formally written as:

Fobserved = z g)v X Fv = <F> (7)
time probability of finding value of property F ensemble
average the system in microstate v in microstate v average

The objective of the next few sections will be to determine the relative
probabilities, 7, , of finding systems in given microstates of ensembles under vary-
ing constraints. This will allow the prediction of properties by performing ensem-
ble averages, denoted by the angle brackets of the rightmost side of Eq. 7.

4. Microcanonical Ensemble: Constant U, V, and N

The simplest set of macroscopic constraints that can be imposed on a system are
those corresponding to isolation in a rigid, insulated container of fixed volume V.
No energy can be exchanged through the boundaries of such a system, so Newton'’s
equations of motion ensure that the total energy U of the system is constant. For
historical reasons, conditions of constant energy, volume, and number of particles
(U, V, N) are defined as the microcanonical ensemble. In the present section (and
the one that follows), we will treat one-component systems for simplicity; general-
ization of the relationships to multicomponent systems is straightforward.

How can we obtain the probabilities of microstates in a system under constant
U, V, and N? Consider for a moment two microstates with the same total energy,
depicted schematically in Fig. 6. One may be tempted to say that the microstate on
the left, with all molecules having the same velocity and being at the same horizon-
tal position is a lot less “random” than the microstate on the right, and thus less
likely to occur. This is, however, a misconception akin to saying that the number
“111111” is less likely to occur than the number “845192” in a random sequence
of 6-digit numbers. However, in a random (uniformly distributed) sample, all
numbers are equally likely to occur, by definition. For molecular systems, it is not
hard to argue that any specific set of positions and velocities of N particles in a
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Basic Postulate
of Statistical
Mechanics

10

volume V that has a given
total energy, should be

equally probable as any ’?—’

other specific set. There are, o> 3 O
of course, a lot more states

that “look like” the right- e O
hand side of Fig. 6.re1ative o &

to the left-hand side, the

same way that there are a
lot more 6-digit numbers
with non-identical digits than there are with all digits equal. The statement that all
microstates of a given energy are equally probable cannot be proved for the gen-
eral case of interacting systems. Thus, we adopt it as the basic Postulate of statisti-
cal mechanics:

Figure 6 Two microstates in an isolated system.

For an isolated system at constant U, V, and N, all microscopic states of a system
are equally likely at thermodynamic equilibrium.

Just as was the case for the postulates of classical thermodynamics, the justification
for this statement is that predictions using the tools of statistical mechanics that rely
on this postulate are in excellent agreement with experimental observations for
many diverse systems, provided that the systems are ergodic.

As already suggested, given that Q(U,V,N) is the number of microstates with
energy U, the probability of microstate v in the microcanonical ensemble, accord-
ing to the postulate above, is:

1

“awrm (8

The function Q(U,V,N) is called the density of states, and is directly linked to the
entropy, via Botzmann’s entropy formula, S=—k,InQ. It is also related to the fun-
damental equation in the entropy representation, with natural variables (U,V,N).
Writing the differential form of the fundamental equation for a one-component
system in terms of €, we obtain:

ds
P dInQ = BdU+BPdV —BudN 9)
B

In Eq. 9, we have introduced for the first time the shorthand notation
B=1/(k;T). This combination appears frequently in statistical mechanics, and is
usually called the “inverse temperature,” even though strictly speaking it has units
of inverse energy [J-1]. Differentiation of Eq. 9 provides expressions for the inverse
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Microcanonical Ensemble: Constant U, V, and N 11

temperature, pressure, and chemical potential, in terms of derivatives of the loga-
rithm of the number of microstates with respect to appropriate variables:

dInQ
)
JlnQ
5
aanJ
= —Bu (11)
%)

Example 2 — A system with two states and negative temperatures

Consider a system of N distinguishable particles at fixed positions, each of which
can exist either in a ground state of energy 0, or in an excited state of energy €. The
system is similar to that depicted in Fig. 1, except it has only 2 (rather than 3) en-
ergy levels. Assuming that there are no interactions between particles, derive ex-
pressions for the density of states and the temperature as a function of the energy,
at the thermodynamic limit, N—oo.

For a given total energy U= Me, the number of possible states is given by the ways
one can pick M objects out of N total particles:

Q(U)z( N ]L
M | M\(N-M)

At the limit of large N, we can use Stirling’s approximation, In(N!)=NInN—-N :

In[QU)] = NInN— N -MInM+ M —(N-M)In(N-M)+N - M =

N—

In[ Q(U) ]=NInN—-MIinM—(N-M)In(N - M)

The temperature as a function of U is obtained from Eq. 9, taking into account that
the volume Vis not a relevant variable for this system:

B= dnQ | [ JInQ R
Lou ) \awme) )

N

1({ o 1
B—E[a—M(NlnN—MlnM—(N—M)ln(N—M))j = g(—1nM —1+In(N-M)+1)=

N
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— k.T 1
BgzlnN M:>Be=1n l—l = | t=——
M € N
In| —-1
M

The possible values of the normalized energy ratio, U/U__ =M /N, range from 0
(every particle is in the ground state) to 1 (every particle is in the excited state).
The relationship between M/N and the temperature is shown in Fig. 7. Low values
of M/N correspond to low temperatures. Remarkably, the temperature approaches
+00 as M/N — % from below, and then returns from negative infinity to just below
zero as M/N — 1.

10 T T

_10 1 1
0 0.25 0.5 0.75 1
M/N

Figure 7 Temperature versus normalized energy.

Do these results make sense? Can negative temperatures exist in nature? It turns
out that the existence of negative temperatures is entirely consistent with thermo-
dynamics. The system of this example has a density of states that is a decreasing
function of the total energy U when more than half the particles are in the excited
state. Most physical systems (e.g. molecules free to translate in space) have a mon-
otonic increase in the number of states at higher energies, and thus cannot exist at
negative temperatures; however, some spin systems# can closely approximate the
system of this example. One needs to realize that negative temperatures are effec-
tively higher than all positive temperatures, as energy will flow in the negative —
positive direction on contact between two systems of opposite sides of the dashed
line M/N = %, corresponding to f =0, or T = *oo.

¥ For a recent example of such a system, see Braun, S. B,, et al., “Negative Absolute Temper-
ature for Motional Degrees of Freedom,” Science, 339:52-55 (2013).
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5. Canonical Ensemble: Constant N, V,and T

Just as in macroscopic thermodynamics, in statistical mechanics we are interested
in developing relationships for systems subject to constraints other than constant
U, V, and N. In classical thermodynamics, a change of variables is performed
through the Legendre transform formalism, which will turn out to be highly rele-
vant here as well. The first example to consider will be a system of fixed volume V
and number of particles N, in thermal contact with a much larger reservoir, as
shown in Figure 8. Because energy can be transferred between the small system
and the reservoir without a significant change in the reservoir’s properties, the
small system is effectively at constant temperature, that of the reservoir. The set of
microstates compatible with constant-NVT conditions is called the canonical en-
semble. Going from the microcanonical (UVN) to the canonical (NVT) ensemble is
akin to taking the first Legendre transformation of the fundamental equation in the
entropy representation. Note that the order of variables (UVN — TVN) is important
when performing Legendre transformations; however, convention dictates that
the canonical ensemble is referred to as the “NVT” ensemble - the ordering of vari-
ables is unimportant once a given transformation has been performed.

How do we derive the relative
probabilities of microstates for
the constant-temperature small
system? The total system (small
system + reservoir) is under con- small system total
stant-UVN conditions. In the pre- at const.-NVT system at
vious sections of this chapter, we const.-NVU
suggested that all microstates Q (1 states
of the total system, which is at
constant energy, volume and
number of particles, are equally
probable. However, a given mi-
crostate v of the small system
with energy U, is consistent with Figure 8 A small system in contact with a large
many possible microstates of the reservoir.
reservoir - the only constraint is
that the energy of the reservoir is Uy =U-U,. The number of such microstates for the
reservoir is

/

reservoir, (), states

/

Q.(Uy) = QU-U))

The probability of finding the small system in state v is proportional to the number
of such microstates,
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P oQ (U-U) = exp(ln[QR(U—UV)]) (12)

We can Taylor-expand In€Q, around €2, (U) given that U, is much smaller than U:

dnQ,
oU

In[Q,(U-U)] = m[Q,)] - U, (13)
Substituting 13 back in Eq. 12 and using Eq. 9, we can incorporate the term involv-
ing Qg (that does not depend on the microstate v) into the constant of propor-
tionality for P,:

P o exp(—BUV) atconstant NVT (14)

This is a very important result. The probability of each microstate in the ca-
nonical ensemble (constant NVT) decreases exponentially for higher energies. The
probability distribution of Eq. 14 is known as the Boltzmann distribution.

In order to find the absolute probability of each microstate, we need to nor-
malize the probabilities so that their sum is 1. The normalization constant is called
the canonical partition function, Q and is obtained from a summation over all mi-
crostates,

QWV,T) = Y, exp(-U,) (15)

all microstates v

The probability of each microstate can now be written explicitly as an equality:

exp(—BUV)
The probability of all microstates with a given energy U is the a sum of Q(U) equal
terms, each at the volume V and number of molecules N of the system:

_ Q(U)exp(-BU)
Q

An important implication of these derivations is that the energy of a system at
constant temperature is strictly fixed. Instead it fluctuates as the system samples
different microstates. This is in direct contrast with the postulate of classical ther-
modynamics that three independent variables (N, V, and T in this case) fully char-
acterize the state of a system, including its energy. As will be analyzed in detail in
the following chapter, fluctuations of quantities such as the energy are present in
all finite systems, but their relative magnitude decreases with increasing system
size. For macroscopic systems fluctuations are negligible for all practical purposes,
except near critical points. In any statistical mechanical ensemble, however, we

atconstant NVT (16)

P atconstant NVT (17)
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need to make a clear distinction between quantities that are strictly constant (con-
strains, or independent variables in the language of Legendre transformations),
and those that fluctuate (derivatives).

Any thermodynamic property B can be obtained from a summation over mi-
crostates of the value of the property at a given microstate times the probability of
observing the microstate:

<B>= Z B-P  for any ensemble (18)

all microstates v

For example, the ensemble average energy <U > in the canonical ensemble is
given by:

1
<U>=§2‘UV exp(—BUv) atconstant NVT (19)
A%

Let us calculate the temperature derivative of the canonical partition function
Q. We have:

InQ _ 1 dexp(-BU) _ Uexp(-pU,)
- QZ . = z =-<U> (20)

9P v B v Q

The fundamental equation for S/kg, Eq., has U, V and N as its variables and 8,
BP,and -Bu as its derivatives. Its first Legendre transform with respect to U is:

S _gyoS_U__U-TS_ g, 1)

k, k, kT kT

This is a function of 8, V, and N, with:

AP )y 22
& J Y

Comparing Egs. 20 and 22, we see that the former (obtained from statistical
mechanics) gives the ensemble average energy, recognizing that the energy fluctu-
ates under constant-NVT conditions. The latter expression, obtained from thermo-
dynamics using Legendre transformations, does not involve averages of fluctuating
quantities. At the thermodynamic limit, N = oo, we can set the two expressions
equal, and obtain a direct connection between the canonical partition function and
the first Legendre transform of S /k_,

—BA=InQ (23)

Eq. 23 relates a thermodynamic quantity, the Helmholtz energy A, to a micro-
scopic one, the partition function 9. This also allows us to confirm the Gibbs en-

2/17/14 version



16

tropy formula for the case of a system at constant-NVT, in the thermodynamic
limit N—oo :

-XP P, = -XF(-InQ-BU,)=nQY 7 +BY RV, =
\Y Eq.514 v % \Y
-A+U S

KTk,

(24)

=InQ +pU=

Given that InQ is the first Legendre transformation of InQ, we can now ex-
press all the first derivatives of the canonical partition function @ , analogous to
Egs. 9-11 for the derivatives of the microcanonical partition function Q:

dolnQ
=-U 25
[ o J )
olnQ 3
SN e
dnQ | _
(—azv ]W— Pu (27)

These expressions are strictly true only in the thermodynamic limit N—oo; for
finite systems, for which we need to preserve the distinction between fluctuating
and strictly constant quantities, the proper expressions involve ensemble averag-
es; for example, the correct version of Eq. 25 is:

olnQ
ap

] =—<U> (28)
V.N

Example 3 — A system with two states in the NVT ensemble

Consider the system of N distinguishable particles at fixed positions, each of which
can exist either in a ground state of energy 0, or in an excited state of energy ¢, in-
troduced in Example 2. Determine the mean energy <U> as a function of tempera-
ture in the canonical ensemble, and compare the result to the microcanonical en-
semble calculation of Example 2.

We denote the state of each particle i = 1,2, ... N by a variable /; which can take the
values 0 or 1, denoting the ground or excited state. The total energy is

U=£21i

i=1

The partition function in the canonical ensemble is:
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N N
an=1nZe_BUV =09-= 2 exp[—BZeI},]: 2 Hexp(—BSli)
v Iy dy el =0,1 i=1 L byl =01 i=1

Now we can use a mathematical identity that will turn out to be useful in all cases
in which a partition function has contributions from many independent particles.
The sum contains 2V terms, each consisting of a product of N exponentials. We can
regroup the terms in a different way, in effect switching the order of the summa-
tion and multiplication:

Z ﬂexp(—Beli) = ﬁ Z e Pel :(1+e_BE)N

I dy =01 =1 i=1 =01

You can easily confirm that the “switched” product contains the same 2¥ terms as
before. The final result for the partition function is:

InQ =NIn(1+e %)
The ensemble average energy <U> is

—Be
<U>:(8an _y ke _ Ne
A-B) )y, 1+e P 1+e

The microcanonical ensemble result can be written as:

N
S Me=U=—"°%
1+eP 1+ePe

| N_1]o & e N _q_ebey=
kT M

The only difference is that in the canonical ensemble the energy is a fluctuating
(rather than a fixed) quantity. Note also that the canonical ensemble derivation
does not entail any approximations; the same result is valid for any N. By contrast,
the microcanonical energy was obtained through the use of Stirling’s approxima-
tion, valid as N—co. Small differences between the two ensembles are present for
finite N.

6. Generalized Ensembles and Legendre Transforms

The previous two sections illustrated how, starting from the fundamental equation
in the entropy representation and Boltzmann’s entropy formula, one can obtain
relationships between macroscopic and microscopic quantities, first in the UVN
(microcanonical) ensemble, with key quantity the density of states, Q. A first Le-
gendre transformation of U to T resulted in the canonical ensemble, with partition
function 9. This process can be readily generalized to obtain relationships be-
tween microscopic and macroscopic quantities and partition functions for a sys-
tem under arbitrary constraints.
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In our derivation, we start from the multicomponent version of the fundamen-
tal equation in the entropy representation,

Z—S =dInQ=PBdU+BPdV - Bu.dN, (29)
B i=1

We have already seen the first Legendre transformation:
W_S _gy= _
Y == BU=p(TS -U)=-P4 (30)
B

The relationships between the original function and the first transform are de-
picted in the table below.

y© =$/k, =InQ yM =-4/kT =InQ
Variable Derivative Variable Derivative
u 1/(ksT) = P 1/(ksT) = P -U
4 P/(ksT) = BP 4 P/(ksT) = BP
N; -Wi/ (ksT) = =P | Ni -Wi/ (ksT) = - P

These relationships link microscopic to macroscopic properties and are strictly
valid at the thermodynamic limit, N—oo. One should keep in mind that in each en-
semble, the variables of the corresponding transform are strictly held constant,
defining the external constraints on a system, while the derivatives fluctuate - they
take different values, in principle, for each microstate of the ensemble.

Probabilities of microstates in two statistical ensembles have already been de-
rived. Microstate probabilities are all equal in the microcanonical ensemble, from
the basic postulate of statistical mechanics; they are equal to the Boltzmann factor,
exp(-PU), normalized by the partition function for the canonical ensemble (Eg.
16). Note that the factor -BU that appears in the exponential for microstate proba-
bilities in the canonical ensemble is exactly equal to the difference between the
basis function and its first Legendre transform, —x,&, .

One can continue this with Legendre transforms of higher order. The probabil-
ities of microstates in the corresponding ensembles can be derived in a way com-
pletely analogous to the derivation for the canonical ensemble, involving a subsys-
tem and bath of constant temperature, pressure, chemical potential, etc. In general,
the kth transform of the basis function is:
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S
y© = yH==t x ~Ex,—..~E X, (31)
B

where &, is the derivative of 1/(0) with respect to variable x,. The probability of a
microstate in the ensemble corresponding to the kt transform is given by

ocexp( &, x izxz—...ikxk) (32)

where the variables x; and derivatives & refer to the original function y(o) . The
normalization factor (partition function) of the ensemble corresponding to the
transformed function, y(k)

= Z exp(—ﬁlxl—izxz—...ikxk) (33)

all microstates v

[1]

Using the partition function Z, the probability P, can be written as an equality:
v

_ exp(—&lx1 -£,x,—.. .ﬁkxk)

=)
—

(34)

\Y

As was the case for the canonical ensemble, the partition function Z is simply re-
lated to the transformed function, y(k):

InE=y® (35)

Example 4 — Gibbs Entropy Formula

The Gibbs entropy formula,
S=- Bzi”v In7,

was derived earlier for the microcanonical ensemble. Show that this relationship is
valid for all statistical ensembles.

We use the expression for the probability of microstates, 7, in a generalized en-
semble, Eq. 34:

exp|-&,x, —&. x,—...§, x
Zﬂ’vlng’vzzg’vln ( — —2 : - k):z?v(_‘il)ﬂ_&-'zxz_""zkxk_lnz)
v v v

—
—

Now recall that the variables for the k-th transform are éréz""'gk'xk+1""xn+2'
which are strictly constant in the corresponding ensemble, while the derivatives,
x1'x2"'"xk'ékﬂ""émz fluctuate. We can rewrite the equation above taking this

into account:
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z“l_pv(_glxl_izxz_---&kxk—lnE) =
:—&122;9(1_&.;ZZI.PVXZ—..._QI(ZQ)VXI(_IHE _

==&, <x,>-§,<x,>-, <x,>-InE
From Egs. 31 and 35,
S
InE=vy _k——§1x1 -£,x,—..-§,x,
B
At the thermodynamic limit, N—oo, so there is no distinction between ensemble
averages and thermodynamic properties, <X, >=X.. Replacing InE and simplify-
ing,
S
> P InP =-—, QED
A% v k
v

B

Example 5 — Grand Canonical (uVT) Ensemble

The grand canonical (constant-pVT) is frequently used in computer simulations.
Derive the partition function, probability of microstates, and derivative relation-
ships in this ensemble for a 1-component system.

Starting from the fundamental equation in the entropy representation with order-
ing of variables y(O) =S(U,N,V)/ky=InQ, the grand canonical ensemble partition
function corresponds to:

S TS—U+uN
InE=y® =" _BU+puN="""r"
k, k,T

The microstates possible in this ensemble include all possible particle numbers
from 0 to oo, and all possible energy levels.

The Euler-integrated form of the fundamental equation is U=TS - PV +uN, so that
the partition function of the grand canonical ensemble can be linked to the follow-
ing thermodynamic property combination:

InE=— =@3PV
k,T P
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y=5/k,=InQ y@ =BPV =InE=
Variable Derivative | Variable Derivative
U B B -U
N -PBu -Bu -N
%4 BP %4 BP

For example, the average number of molecules in the system is given by:

( dinZ j =—<N> = kBT(alnEJ =<N>
a(_B“’) BV ali BV

The probability of microstates in this ensemble is:

p _ SXP(BU, +BuN,)

v )

[x]

where Z = Y exp(-pU, +BuN, ) = iQ(N,V,T)exp(BuN)

N=1

Example 6 — Constant-pressure (NPT) Ensemble

The constant-pressure (NPT) ensemble is also frequently used in computer simu-
lations. Derive the partition functions, probability of microstates, and derivative
relationships in this ensembles for a 1-component system.

Ee start from from the fundamental equation in the entropy representation with
ordering of variables y(o) =S(U,V,N)/k, and obtain the second transform:

S TS—U—PV
InE=y®="—BU-BPV=—"——— =—BuN=—PG
ky k,T

The microstates possible in this ensemble include all possible volumes from 0 to
oo, and all possible energy levels.

The derivative table is shown on the next page.

For example, the average volume is given by:

(EﬂnE] =—<V> = kBT(alnE] =<V>
J(BP) B JoP B
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y=5/k,=InQ y@=—BuN=In=
Variable Derivative | Variable Derivative
U B B -U
1% BP BP %
N -Bu N -Bu

The probability of microstates in this ensemble is:

B exp(—BU, -BPV,)

=)
et

P

\Y

, where E:Zexp(—BUV—BPVV)
v
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