The Wave equation

@ The theoretical foundation for guantum chemistry is the
time-independent Schrodinger wave equation:

HV = EV

@ V is the Wavefunction. It is a function of the positions of all
the fundamental particles (electrons and nuclei) in the
system.

@ H is the Hamiltonian operator. It is the operator associated
with the observable energy.

@ E is the Total Energy of the system. It is a scalar (number).
@ Relativistic effects are usually small and will be ignored.



The Hamiltonian

@ The Hamiltonian, H, is an operator. It contains all the terms
that contribute to the energy of a system:

H=T+V
@ T is the kinetic energy operator:
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@ VZis the Laplacian given by: V2 = 8x2 + 88; + 5222



The Hamiltonian

@ V is the potential energy operator:
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@ V. is the nuclear-nuclear repulsion term:
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@ V.. is the nuclear-electron attraction term:

@ V.. is the electron-electron repulsion term:
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All guantum chemical calculations use a special system of units
which, while not part of the Sl, are very natural and greatly
simplify expressions for various quantities.
@ The length unit is the bohr (gy = 5.29 x 10~ 1'm)
@ The mass unit is the electron mass (m. = 9.11 x 10~3'kg)
@ The charge unit is the electron charge (e = 1.60 x 10~ '°C)
@ The energy unit is the hartree (E, = 4.36 x 10718))

For example, the energy of the H atom is ‘71 hartree (exactly).
In more familiar units this is —1,313 kd/mol.



The hydrogen atom
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@ We will use the nucleus as the centre of our coordinates.
@ The Hamiltonian is then given by:
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@ The ground-state wavefunction is simply a function of r.



The chemical connection

@ So far we have focused mainly on obtaining the total
energy of our system.

@ Many chemical properties can be obtained from derivatives
of the energy with respect to some external parameter.
@ Examples of external parameters include:

e Geometric parameters (bond lengths, angles etc.).
e Applied electric fields (e.g. from a solvent)
e Magnetic field (in NMR experiments).

@ 15 and 2" derivatives are commonly available and used.

@ Higher derivatives are required for some properties, but
are expensive (and difficult!) to compute.



Hartree-Fock theory

@ HF theory is the simplest wavefunction-based method.

@ It relies on the following approximations:
@ The Born-Oppenheimer approximation
e The independent electron approximation
@ The linear combination of atomic orbitals approximation
@ The Hartree-Fock model introduces an intrinsic error called
the correlation energy.

@ [t forms the foundation for more elaborate electronic
structure methods.



The Born-Oppenheimer approximation

@ Nuclei are much heavier than electrons (the mass of a
proton ~ 2000 times that of an electron) and therefore
travel much more slowly.

@ We assume the electrons can react instantaneously to any
motion of the nuclei (think of a fly around a rhinoceros).

@ This means the nuclei are stationary w.r.t. the electrons.
@ This assumption allows us to factorise the wave equation:

V(R,r) =V, (R)V.(r; R)

where the ;" notation indicates a parametric dependence.

@ The potential energy surface is a direct consequence of
the BO approximation.



The independent electron approximation

Consider the H> molecule:
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@ The total wavefunction involves 4x3 spatial coordinates:
V =V(R¢,Ro,1q,12)

@ We invoke the Born-Oppenheimer approximation:
V = W, (Ry, R2)We(ry,re)

@ How do we model W.(ry,r2)?



The Hartree wavefunction

@ We assume the wavefunction can be written as a Hartree
product: \IJ(r1 , r2) = ?,D1 (r1 )¢2(r2)

@ The individual one-electron wavefunctions, v; are called
molecular orbitals.

@ This form of the wavefunction does not allow for
Instantaneous interactions of the electrons.

@ Instead, the electrons feel the average field of all the other
electrons in the system.

@ The Hartree form of the wavefunction is is sometimes
called the independent electron approximation.



The Pauli principle

@ One of the postulates of quantum mechanics is that the
total wavefunction must be antisymmetric with respect to
the interchange of electron coordinates.

@ Antisymmetry is a consequence of the Pauli Principle.
@ The Hartree wavefunction is not antisymmetric:

W(r2, 1) = ¥1(r2)o(rr) # —V(rq, r2)

@ We can make the wavefunction antisymmetric by adding all
signed permutations:

1

\IJ(r1 ; r2) = \/§

[1(r1)a(r2) — ¥1(r2)ea(r)]



The Hartree-Fock wavefunction

@ The antisymmetrised Hartree wavefunction is called the
Hartree-Fock wavefunction.

@ [t can be written as a Slater determinant:

Y1(ry)  o(ry) - Un(ry)
1 | ¥i(r2) e(r2) -+ Pn(rz)

¢1(.rN) ¢2(.rN) @bN(.rN)

@ This ensures the electrons are indistinguishable and are
therefore associated with every orbital!

@ A Slater determinant is often written as |1, 1o, ... ¥p)



The LCAO approximation

@ The HF wavefunction is antisymmetric and written in terms
of the one-electron molecular orbitals (MOs).

@ What do the MOs look like?
@ We write them as a linear combination of atomic orbitals:

i(ri) = Z Cruixu(ri)

@ The x,, are atomic orbitals or basis functions.
@ The C,; are MO coefficients.



An example

The Ho molecule:
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@ For Hy the MO coefficients, C,,;, are + -



The HF theory

@ If Vis normalised, the expectation value of the energy is
given by: E = (V|H|V)
@ For the HF wavefunction, this can be written:
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@ H; involves one-electron terms arising from the kinetic
energy of the electrons and the nuclear attraction energy.

@ J; involves two-electron terms associated with the coulomb
repulsion between the electrons.

@ Kj involves two-electron terms associated with the
exchange of electronic coordinates.



The HF energy

@ Remember that our wavefunction is given in terms of a
determinant: |iq, 40, ... p)

@ And our MOs are written as a LCAOQO:

Li(r) = Cuixu(ry)

@ We can write the one-electron parts of the energy as:

Hi = (¢i!ﬁ!¢i>
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@ The J; and Kj matrices can also be written in terms of the
MO coefficients, C,,;.



The variational principle

@ The MO coefficients, C,;, can be determined using the
variational theorem:

Variational Theorem

The energy determined from any approximate wavefunction will
always be greater than the energy for the exact wavefunction.

@ The energy of the exact wavefunction serves as a lower
bound on the calculated energy and therefore the C,,; can
be simply adjusted until the total energy of the system is
minimised. This is the variational method.



The self-consistent field method

@ Consider a 2-electron system with MOs 1 (r{) and ¥o(r2).
@ Electron 1 feels the nuclei and the field of 1 (r2).
@ Electron 2 feels the nuclei and the field of ¢ (r+).

@ This creates a chicken and egg situation: we need » t0
solve for /1, but we need ¢ to solve for 5.

The SCF Process

@ Guess a set of MOs, C,,;

@ Use MOs to compute H;, J; and K;

© Solve the HF equations to obtain a new set of MOs
© Are the new MOs different? Yes — (2) : No — (5)
©@ Self-consistent field converged




Electron spin

@ So far for simplicity we have ignored the spin variable, w.
@ Each MO actually contains a spatial part and a spin part.
@ For each spatial orbital, there are two spin orbitals:
X0 (r,w) = i(Na(w) and x7 (r,w) = ;(r)B(w).
@ This is reasonable for closed-shell systems, but not for
open-shell systems.
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Restricted and unrestricted HF theory
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RHF versus UHF
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Pros and cons

Advantages of the UHF method:

@ The UHF wavefunction has more flexiblity and can give a
lower energy (variationally better).

@ Provides a qualitatively correct description of
bond-breaking.

@ Provides a better model for systems with unpaired
electrons.

Disadvantages of the UHF method:
@ Calculations take slightly longer to perform than for RHF.

@ Can lead to spin-contamination which means the

wavefunction is no longer a spin-eigenfunction (as it should
be).



Performance: HF equilibrium bond lengths

Table 1: Hartree-Fock and experimental equilibrium bond lengths R, (in pm)

Molecule Bond HF Experiment
Ho Run /3.4 74.1
HE Rru 39.7 01.7

H>O Ron 94.0 05.7
O3 Roo 119.2 127.2
CO2 Rco 113.4 116
CoHy Rcc L3135 133.4
CH4 Rcn 108.2 108.6

Hartree-Fock calculations systematically underestimate equilibrium bond lengths



Performance: HF atomization energy

Table 2: Hartree-Fock and experimental electronic atomization energies

(kJ/mol)
Molecule HF Experiment
Fo -155.3 163.4
Ho 350.8 458.0
HF 405.7 593.2
H>O 652 3 975.3
O3 -238.2 616.2
COq 1033.4 1632.5
CoHy 1793.9 2359.8
(s 1374.1 1759.3

Hartree-Fock calculations systematically underestimate atomization energies.




Performance: HF reaction enthalpies

Table 3: Hartree-Fock and experimental electronic reaction enthalpies (kJ/mol)

Reaction e Experiment
CO + Hy — CH>O0 2.7 -21.8
H-O + F; —+ HOF + HF -139.1 -129.4
No + 3Hs — 2NHs3 -147.1 -165.4
CoHs 4+ Ho — CoHy -214.1 -203.9
CO2 + 4H, — CH4 4+ 2H50 24 1) -245.3
2CH2 — CaH4 -731.8 -845.7
O3 + 3H2 — 3H20 -1142.7 -935.5

Hartree-Fock method fails when reaction is far from isodesmic.
Lack of electron correlations!!



Electron correlation

@ |n the Hartree-Fock model, the repulsion energy between two
electrons is calculated between an electron and the average
electron density for the other electron. What is unphysical
about this is that it doesn't take into account the fact that the
electron will push away the other electrons as it moves around.
This tendency for the electrons to stay apart diminishes the
repulsion energy.

@ |f one is on one side of the molecule, the other electron is likely
to be on the other side.

@ Their positions are correlated, an effect not included in a

~ Hartree-Fock calculation.
| | ® While the absolute energies calculated by the Hartree-Fock

e e e method are too high, relative energies may still be useful.

Angular part of He ground state wavefunction
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Basis sets

@ The atom-centred functions used to describe the atomic
orbitals are known as basis functions and collectively form
a basis set.

@ Larger basis sets give a better approximation to the atomic
orbitals as they place fewer restrictions on the
wavefunction.

@ Larger basis sets attract a higher computational cost.

@ Standard basis sets are carefully designed to give the best
description for the lowest cost.



Minimal basis sets

@ The simplest possible atomic orbital representation is
called a minimal basis set.

@ Minimal basis sets contain one basis functions for each
occupied atomic orbital.

@ For example:
H & He 1 function (1)
1% row 5 functions, (1s,2s,2px, 2py, 2p7)
2% row 9 functions, (1s,2s, 2py, 2py, 2Pz, 3S, 3Px, 3Py, 3Pz)
@ Functions are always added in shells., e.g. a p shell
consists of three functions.



Minimal basis sets

@ The STO-3G basis set is a minimal basis set where each
atomic orbital is made up of 3 Gaussians.

@ The STO-6G basis set is a minimal basis set where each
atomic orbital is made up of 6 Gaussians.

@ Minimal basis sets are not well suited to model the
anisotropic effects of bonding.

@ Basis function exponents do not vary and therefore the
orbitals have a fixed size and cannot expand or contract.



Split valence basis sets

@ Split-valence basis sets model each valence orbital by two
or more basis functions that have different exponents.

@ They allow for size variations that occur in bonding:

-4

@ Double split valence basis sets: 3-21G, 6-31G and VDZ
@ Triple split valence basis sets: 6-311G and VTZ



Example: Carbon 6-31G basis set
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Polarized basis sets

@ Polarisation functions have higher angular momentum than
the occupied AOs.

@ They allow for anisotropic variations that occur in bonding

O+

@ 6-31G(d) or 6-31G™ include d functions on the heavy
atoms (non-hydrogen).

@ 6-31G(d, p) or 6-31G™ include d functions on heavy atoms
and p functions on hydrogen atoms.



Diffuse functions

@ Diffuse basis functions are additional functions with small
exponents, and are therefore have large spatial extent.
@ They allow for accurate modelling of systems with weakly
bound electrons, such as:
@ Anions
@ Excited states
@ A set of diffuse functions usually includes a diffuse s orbital
and a set of diffuse p orbitals with the same exponent.

@ Examples include 6-31+G which has diffuse functions on
the heavy atoms and 6-31++G which has diffuse functions
on hydrogen atoms as well.



@ Larger basis sets can be built up from these components,
for example 6-311++G(2df,2pd).

@ Dunning basis sets also exist, for example pVDZ and pVTZ
(polarised double split valence and triple split valence,
respectively).

@ Some basis sets work better for HF and DFT calculations
(e.g. Pople basis sets and Jensen’s pc-n bases)
@ Others are best for correlated calculations (e.g. cc-pV*Z).

@ Carefully designed sequences of basis sets can be used to
extrapolate to the basis set limit. For example cc-pVDZ,
cc-pVTZ, cc-pVQL. ..



Effective core potentials

@ Effective Core Potentials replace core electrons with an
effective potential which is added to the Hamiltonian.
@ ECPs have two main advantages:
@ They reduce the number of electrons (cheaper).
@ They can be parameterised to take account of relativity.
@ Non-relativistic ECPs include HWMB (STO-3G) and
LANL2DZ (6-31QG).

@ Relativistic ECPs include SRSC (6-311G*) and SRLC
(6-31Q).

@ The size of the core can vary, for example:
SRLC (large core): K =[Ar] + 3s, 2p
SRSC (small core): K=[Ne] + 5s, 4p

@ ECPs are particularly useful for transition metals.



Counting basis functions

It is important to have an idea of how many basis functions are
in your molecule as this will determine the cost of the

calculation.

Basis set Description No. functions
H CO H,O CgHg
STO-3G Minimal 1 5 7 36
3-21G Double split-valence 2 9 13 66
6-31G(d) Double split-valence with polari- 2 15 19 102

sation

6-31 G(d, p) Ditto, with p functions on H 3 15 25 120
6-311+G(d, p) Triple split-valence with polarisa- 6 22 34 168

tion, p functions on H and diffuse

functions on heavy atoms




Accuracy

The accuracy of the computed properties is sensitive to the
quality of the basis set. Consider the bond length and
dissociation energy of the hydrogen fluoride molecule:

Basis set Bond Length (A) D, (kJ/mol)
6-31G(d) 0.9337 491
6-31G(d, p) 0.9213 523
6-31+G(d) 0.9408 515
6-311G(d) 0.9175 484
6-311+G(d, p) 0.9166 551
Expt. 0.917 D66

ZPVE = 25 kJ/mol MP2/6-311+G(d, p)



Basis set superposition error

Calculations of interaction energies are susceptible to basis set superposition
error (BSSE) if they use finite basis sets.

= As the atoms of interacting molecules or two molecules approach one another, their
basis functions overlap. Each monomer “borrows” functions from other nearby components,
effectively increasing its basis set and improving the calculation.

" The counterpoise approach (CP) calculates the BSSE employing "ghost orbitals”. In the
uncorrected calculation of a dimer AB, the dimer basis set is the union of the two monomer
basis sets. The uncorrected interaction energy is

Vap(G) = Eap(G,AB) — Ea(A) — EB(B)
where G denotes the coordinates that specify the geometry of the dimer and E, (G, AB)

the total energy of the dimer AB calculated with the full basis set AB of the dimer at that
geometry. Similarly, E,(A) and E_(B) denote the total energies of the monomers A and

B, each calculated with the appropriate monomer basis sets A and B, respectively.



Basis set superposition error

The counterpoise corrected interaction energy is
Vis(G) = Eag(G,AB) — E4(G,AB) — Es(G, AB)

where E, (G, AB) and E_(G, AB) denote the total energies of monomers A and B, respectively,

computed with the dimer basis set at geometry G, i.e. in the calculation of monomer A the
basis set of the "other” monomer B is present at the same location as in dimer A, but the nuclei
of B are not. In this way, the basis set for each monomer is extended by the functions of the
other monomer. The counterpoise corrected energy is thus

e

BSSE is present in all molecular calculations involving finite basis sets but in practice its effect
is important in calculations involving weakly bound complexes. Usually its magnitude is few kJ/
mol to binding energies which is often very significant.
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