The story so far

@ The Hartree wavefunction is based on molecular orbitals:

Wy (ry, r2) = 11(r1)yo(r)

and models Et, Ey and Ej, but is not antisymmetric.

@ The Hartree-Fock wavefunction is antisymmetric and can
therefore model the exchange energy, Ex

i
V2

@ Hartree-Fock theory has an intrinsic error. We call this the
correlation energy and is defined by:

[1(r1)a(r2) — 1 (r2)eba(ry)]

Wyp(ry,r2) =

Ec = E — Enr



Energy decomposition

@ The electronic Hamiltonian (energy operator) has several
terms: X X X X
He = Te(r) + Vie(r; R) + Vee(r)

@ This operator is linear, thus the electronic energy can also
be written as a sum of several terms:

EGZ\ET—I—E\c—i—\EJ—FEK—I—ECJ

Ay

Te + \A/l'le Vee

@ The electron-electron repulsion term has been broken into
three terms: E; + Ex + Ec



Electronic energy decomposition

@ E£;is the coulomb repulsion energy.
This energy arises from the classical electrostatic repulsion
between the charge clouds of the electrons and is correctly
accounted for in the Hartree wavefunction.

@ Ly is the exchange energy.
This energy directly arises from making the wavefunction
antisymmetric with respect to the interchange of electronic
coordinates, and is correctly accounted for in the
Hartree-Fock wavefunction.

@ Ec is the correlation energy.
This is the error associated with the mean-field
approximation which neglects the instantaneous
interactions of the electrons. So far we do not have
wavefunction which models this part of the energy.



Electronic energy decomposition

The total electronic energy can be decomposed as follows:

E=Er+Ev+ Ej+ Ex + Ec

@ For the Ne atom, the above energy terms are:
ET = +129 Eh

Ev = -312 E,
E;, = +66 E
Ex = -12 B, 9.3%
Ec = -04 E 0.3%

@ The HF energy accounts for more than 99% of the energy
@ If the correlation energy is so small, can we neglect it?



The importance of E_

Consider the atomisation energy of the water molecule:

Energy H>O 2H+ O AE

Eur -76.057770 -75.811376 0.246393
Eccsp -76.337522  -75.981555 0.355967

If we neglect the correlation energy in the atomisation of water
we make a 30% error!



The electron correlation energy

@ The correlation energy is sensitive to changes in the
number of electron pairs.

@ The correlation energy is always negative.

@ There are two components to the correlation energy:

e Dynamic correlation is the energy associated with the
dance of the electrons as they try to avoid one another.
This is important in bond breaking processes.

e Static correlation arises from deficiencies in the single
determinant wavefunction and is important in systems with
stretched bonds and low-lying excited states.

@ Electron correlation gives rise to the inter-electronic cusp.

@ Computing the correlation energy is the single most
important problem in quantum chemistry.



Modeling the correlation energy

There exists a plethora of methods to compute the correlation
energy, each with their own strengths and weaknesses:

@ Configuration interaction (CISD, CISD(T))

@ Mgller-Plesset perturbation theory (MP2, MP3. . )
Quadratic configuration interaction (QCISD)
Coupled-cluster theory (CCD, CCSD, CCSDT)
Multi-configuration self-consistent field theory (MCSCF)
Density functional theory (DFT)

In practice, none of these methods are exact, but they all
(except for DFT) provide a well-defined route to exactitude.



Configuration interaction

@ Recall the HF wavefunction is a single determinant made
up of the product of occupied molecular orbitals ;:

Vo = |1, 92,...UN)

Tﬁi — Z C,u,iX)u
[

@ This is referred to as a single configuration treatment.

@ If we have M atomic orbitals, the HF method gives us M
molecular orbitals, but only the lowest N are occupied.

@ The remaining M — N orbitals are called virtual orbitals.



Configuration interaction

@ We can create different configurations by “exciting” one or
more electrons from occupied to virtual orbitals:

WO — w'l)wZa"'wi)wj)'“wN)
‘U? — ¢17¢27---waawja---l/w>
w?b — w17w27"°waawbv"'wN>

@ These configurations can be mixed together to obtain a
better approximation to the wavefunction:

Ver = oW + Z C,"”lllf + Z C;bw?jb + ...
i ij

@ The ClI coefficients, c2, c;j.'b ... can be found via the

variational theorem.



Configurations

@ To improve on the HF wavefunction, we need to consider

excited configurations:
A
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@ These configurations can be mixed to give a better
approximation to the wavefunction :

Ve = GoWo + Y cfWa+) cfPwab 4
i i



How does this help?

Consider a minimal H, system with two MOs:

Y(r)
0.6

4
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The node in the o* orbital allows the electrons to spend more
time apart, thus lowering the electron repulsion energy.



Orbital densities

The picture can be made clearer by considering density plots of
the two orbitals:
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@ This mixing is a compromise as Er and Ey also change.
@ This can be viewed as a dynamic correlation effect.



How does this help?

@ Adding in configurations also helps modelling stretched
bonds.

C()%‘I C()%O
01%0 01%1

@ This can be viewed as a static correlation effect.



Configuration interaction

@ If we allow all possible configurations to mix in then we
obtain the Full-Cl wavefunction. This is the most complete
treatment possible for a given set of basis functions.

@ Complete-Cl is Full-Cl in an infinite basis set and yields the
exact non-relativistic energy.

@ The cost of full-Cl scales exponentially and is therefore
only feasible for molecules with around 12 electrons and
modest basis sets.

@ Truncated Cl methods limit the types of excitations:

e CIS adds only single excitations (same as HF!)

e CID adds only double excitations

e CISD adds single and double excitations, O(N°®)

e CISDT adds single, double and triple excitations, O(/N?)



Size consistency

@ A method is size-consistent if it yields M times the energy
of a single monomer when applied to M non-interacting
monomers.

@ HF and Full-Cl theories are size consistent, but truncated
Cl approaches are not.
@ A method that is not size-consistent:

@ Yields poor dissociation energies.
e Treats large systems poorly.

@ Coupled-cluster wavefunctions are like Cl wavefunctions,
but include terms to maintain size-consistency.

e CCSD includes all single and double excitations, but also
includes some quadruple excitations.

@ Coupled-cluster wavefunctions are not variational.



Size consistency

@ The CISD wavefunctions for two separate two-electron
systems includes double excitations on both:

.

HE1
[—'IJa—

@ When considered as a single system, however, these lead
to quadruple excitations, which are not included in CISD.

@ CCSD includes these types of excitation, making it
size-consistent.

It




Mgaller-Plesset perturbation theory

@ In Mgaller-Plesset Perturbation Theory the Hamiltonian is
divided into two parts:

I,—\I:I,‘\I()#—)\\Af

@ Hj is the Hartree-Fock hamiltonian.
@ \V is a perturbation, which is assumed to be small.

@ The wavefunction and energy are then expanded as a
power series in A (which is later set to 1):

Wy = W+ AWy + 22V, ..

E, = Ey+ \Ej + N°Eo + ...

@ W, and Ej are the HF wavefunction and energy.



Mgaller-Plesset perturbation theory

@ MPn is obtained by truncating the expansion at order \”.
@ The MP1 energy is the same as the HF energy.
@ The MP2 energy is given by:

occ vir KWO‘\"/‘\U?bHZ

EMPZZZZeiJrsj—ea—eb

i< a<b

@ The cost of calculating the MP2 energy scales as O(N°)
and typically recovers ~80-90% of the correlation energy.

@ The MPn energy is size-consistent but not variational.
@ The MP series may diverge for large orders.



The number of basis functions N can be used as a measure of
the size of the system. The cost of different methods scales

differently:

f(N)
50

40
30
20
10

HF formally scales as
O(N*), practically as O(N?)
MPn scales as O(N"3)
CCSD and CISD are O(N°)
CCSD(T) scales as O(N’)
CCSDT scales as O(N?®)



An example

System thirp  tmp2  Icesp
Ala; 26s 40s 58 m
Alas 47s 7/m
Alas 200s 31 m
Alay 8 m




Summary of post-HF methods

@ Correlated wavefunction methods:

Theory Finite Expansion Variational Size-Consistent

Cl v v X
CC v X v
MP X X v

Each of these methods gives a hierarchy to exactitude.
Full-Cl gives the exact energy (within the given basis set).
The concepts of variational and size-consistent methods.

Coupled-cluster methods are currently the most accurate
generally applicable methods in quantum chemistry.

@ CCSD(T) has been called the “gold standard” and is
capable of yielding chemical accuracy (< 1 kcal/mol error).



What is the density?

@ The electron density is a fundamental quantity in quantum
chemistry:

p(n):N/---/w*(n,rz,...,er(n,rz,...,rN)drz...drN

@ p(r)dr gives a measure of the probability of finding an
electron in the volume element ar.

@ ltis a function of three variables (x, y, z) and is therefore
(relatively) easy to visualise.



What is a functional?

@ A function takes a number and returns another number:
f(x) = x* — 1 f(3) =
@ An operator takes a function and returns another function:
D(fy=2 D(x? — 1) = 2x
@ A functional takes a function and returns a number:
FIfl = [} f(x)dx  F[x2—1]=—-2/3



What is a density functional?

@ A density functional takes the electron density and returns
a number, for example:

N[p] = fp(r)dr

simply gives the number of electrons in the molecule.

@ Density functional theory (DFT) focusses on functionals
that return the energy of the system.



What is a density functional?

The total energy can be decomposed into the following parts:

E=Er+Ev+ E+ Ex + Ec

@ The classical potential energy terms of the total energy can
be expressed exactly in terms of the density:

E - / / p(ri)p r2)dr1dr2
r{ — I
B Zap(r)
By = —Z/mAr'dr

@ What about Et, Ex and Ec-?




Orbital functionals

@ In Hartree-Fock theory, Er, Ex and Ec, are all orbital
functionals, eg:

Er = ; Z/w,-(r)vzw,-(r)dr

@ No (known) exact expression for the kinetic energy in
terms of p exists.

@ The exchange energy is non-classical, so should we
expect there to be an expression for the exchange energy
in terms of the classical density?



The Hohenberg-Kohn theorems

The First Hohenberg-Kohn Theorem
The electron density p determines the external potential ».

@ This theorem shows a one-to-one correspondence
between p and v and therefore (via the SW.E.) V.

@ It also shows that there exists a universal and unique
energy functional of the density.

The Second Hohenberg-Kohn Theorem

@ For any valid trial density, p:  E, < E,[f]

@ The second HK theorem establishes a variational principle
for ground-state DFT.



Density functional theory

@ The HK theorems are non-constructive, so we don’t know
what the form of the universal functional is.

@ Research in DFT largely focusses on the development of
approximate functionals that model experimental data.

@ Kinetic energy functionals are particularly problematic as
Er is so large and even a small relative error gives large
absolute errors.

@ Almost all DFT calculations rely on the Kohn-Sham

approximation, which avoids the need for a kinetic energy
density functional.

@ Different DFT methods differ in the way they represent Ex
and Ec.



The uniform electron gas

@ The uniform electron gas is a model system with a
constant density of electrons.

@ In 1930 Dirac showed that the exact exchange energy for
this system is given by:

Ey — —CX/p4/3(r)dr

@ Much later, Vosko, Wilk and Nusair parameterised a
correlation functional (VWN) based on the UEG, its form is
more complicated and it is inexact.



Local density approximation

@ Applying the UEG functionals to molecular system is called
the local (spin) density approximation (LDA).

@ Combining the Dirac and VWN expressions gives the
S-VWN functional.

@ The LDA functional for Ex underestimates the true
exchange energy by about 10% whereas the VWN
functional overestimates Ec by as much as 100%.

@ Together they overbind molecular systems.

@ The constant Cy is sometimes scaled to account for the
over-binding, this gives X, theory.



Gradient corrected functionals

@ Gradient corrected functions depend on Vp as well as p.

@ The gradient helps to account for deviations from
uniformity in molecular systems.

@ The generalised gradient approximation exchange
functionals have the form

Ex = [ p**()g(x)dr

where x is the reduced gradient.

@ Different GGASs, such as Perdew 86 and Becke '88 are
defined by different g(x) functions.



GGA correlation functionals

@ There are also GGA correlation functionals such as
Lee-Yang-Parr (LYP) and Perdew '86.

@ Ex and Ec¢ can be mixed and matched, although certain
combinations such as BLYP work particularly well.

@ Combining a correlation functional with Hartree-Fock
exchange does not work well, but hybrid functionals do:

EB3LYP (1 — C1 )E)]:()30+C1 EIIEOCK—I—CQE)]?SS—{—('I —C3)E(\:/WN+C3E(I:‘YP

@ B3LYP is the most popular density functional that is used
and yields very good structural and thermochemical
properties.



Strengths and weaknesses

Advantages of DFT methods include:
@ Low computational cost
@ Good accuracy for structures and thermochemistry
@ The density is conceptually simpler than W

Disadvantages of DFT methods include:
@ Can fail spectacularly and unexpectedly
@ No systematic way of improving the results
@ Integrals require numerical quadrature grids



@ A functional takes in a function and returns a number.

@ The density, p(r), contains all the information necessary, as
shown by the Hohneberg-Kohn theorems.

@ Density functionals can be used to compute the difficult
exchange and correlation energies cheaply.

@ LDA functionals, e.g. S-VWN, are based on the UEG, they
overbind.

@ GGA functionals, e.g. B-LYP, incorporate the reduced
density gradient and are much more accurate.

@ Hybrid functionals, e.g. B3LYP, incorporate Fock exchange
and are the most accurate.



The Pople Diagram

@ A minimal basis Hartree-Fock calculation forms our
baseline, other levels of theory distinguish themselves by
their treatment of the correlation energy (left to right) and
the size of the basis (top to bottom)

HF MP2 MP3 MP4 CCSD(T) --- Full Cl

Minimal Low-level cee cee cee Unbalanced
Split-Valence
Polarised
Diffuse
Polarised +
Diffuse

Infinite Unbalanced Exact!




Establishing the reliability of a method

Experimental data forms a valuable means of establishing
the reliability of a particular level of theory.

Data sets such as the G2 and G3 sets are made up of
accurate values with experimental uncertainties of less
than 1 kcal/mol (chemical accuracy).

The G2 set consists of thermochemical data including
atomisation energies, ionisation potentials, electron
affinities and proton affinities for a range of small
molecules.

@ These data set can be used to benchmark a level of theory.
@ What if we want to apply our method to an unknown

system?



Establishing the reliability of a method

@ If we wish to apply a level of theory to a system that has no
experimental data available, we need to converge the level
of theory to have confidence in our results.

@ We start near the top left-hand (cheap) corner of the Pople
diagram and move along the diagonal towards the bottom
right-hand (expensive) corner carrying out several
calculations.

@ When we see no significant improvement in the result, then
we conclude that we have the correct answer.

@ Note that we cannot apply this approach to DFT methods
(although we can converge the basis set)



Specifying the level of theory

@ Geometric properties converge faster (with respect to the
level of theory) than the energy (they are less sensitive to
correlation)

@ |t is common to optimise the geometry at a low-level of
theory, and then compute the energy at a higher level of
theory

@ The notation for this is:
energy-method / basis-set // geometry-method / basis-set

@ The // can be read as ‘optimised at'.

@ For example:
CCSD(T) / 6-311G(2d,p) // HF / 6-31G



Performance

Average deviation from experiment for bond-lengths of 108
main-group molecules using 6-31G(d,p)

Bond-length HF MP2 LDA GGA Hybrid
Deviation A | 0.021 0.014 0.016 0.017 0.011

Average deviation from experiment for atomisation energies of
108 main-group molecules using 6-31G(d,p)

AE HF MP2 LDA GGA Hybrid
Deviation kcal/mol | 119.2 22.0 52.2 7.0 6.8




Performance

Calculated electron affinity (eV) for Fluorine:

F+e™ —F~

HF MP2 B3LYP

STO-3G -10.16 -10.16  -9.01
3-21G -1.98 -1.22 -0.86
6-31G(d) -0.39 +1.07 +1.05

6-311+G(2df,p) +1.20 +3.44 +3.46
6-311+G(3df,2p) | +1.19 +3.54 +3.46
Experiment +3.48




Performance

Convergence of MP methods relative to Full-Cl using the

STO-3G basis.

Method HCN CN~ CN
MP2 -91.82033 -91.07143 -91.11411
MP3 -91.82242 -91.06862 -91.12203
MP4 -91.82846 -91.07603 -91.13538
MP5 -91.83129 -91.07539 -91.14221
MPG6 -91.83233 -91.07694 -91.14855
MP7 -91.83264 -91.07678 -91.15276
MP8 -91.83289 -91.07699 -91.15666
Full-Cl -91.83317 -91.07706 -91.17006

AE < 0.001 MPG6 MP6 MP19




Performance

@ In general, the use of moderately large basis sets such as
6-311G(d,p) combined with the MP2 treatment of electron
correlation leads to calculated structures very close to
experiment.

@ For difficult systems, the Coupled Cluster (CC) methods
correspond to an electron correlation treatment better than
MP4 and thus greater accuracy is achieved, e.g. ozone:

Parameter MP2 CCSD CCSD(T) Expt
O-O bond (A) | 1.307  1.311 1.298 1.272
/000 (°) |113.2 1146 116.7 116.8
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