Ab initio molecular dynamics

Why ab initio methods in MD?
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This can be done in two ways
= Fitting an empirical potential
» Generating forces directly from electronic structure calculations as MD trajectory evolves



Ab initio molecular dynamics

= Parameter-free molecular dynamics: the potential energy surface is obtained from density
functional theory

= The price to pay is that the Kohn-Sham equations need to be solved at all the nuclear
configurations in a trajectory

= The problem is greatly simplified (conceptually and in practice) by calculating the electronic
structure on the fly during nuclear dynamics

= The task is achieved with a generalized molecular dynamics scheme 1n the extended space
of nuclear { R} and electronic {1} coordinates
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Carbon dioxide transport in molten calcium
carbonate occurs through an oxo-Grotthuss

mechanism via a pyrocarbonate anion

Dario Corradini'?3, Francois-Xavier Coudert** and Rodolphe Vuilleumier'23*
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Figure 1 | Oxo-Grotthus mechanism via a pyrocarbonate anion.

a, Formation of the pyrocarbonate ion C,Os>" from the reaction of CO, with
carbonate anion COs?". b, A cascading mechanism, with rapid sequence of
pyrocarbonate formation and dissociation events.




QM/MM

Combined quantum-mechanics/molecular-mechanics (QM/MM) approaches have become the
method of choice for modeling reactions in biomolecular systems.
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Fig. 1. lllustration of the QM/MM concept. A small region, in which a chemical reaction
occurs and therefore cannot be described with a force field, is treated at a sufficiently
high level of QM theory. The remainder of the system is modelled at the MM level.



Example: QM/MM
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Fig. 7. Snapshots from excited-state trajectories of wild-type PYP, showing the chromophore (pca) in the active site pocket.
The first snapshot is at the excitation. The second shows the configuration at the radiationless transition from S; to Sy. The
third snapshot shows the photoproduct, in which the carbonyl oxygen of the thioester linkage has flipped and is no longer

hydrogen bonded to the backbone of Cys69.



Example: QM/MM
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PYP chromophore in water
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Fig. 10. In water the chromophore undergoes both single-and double-bond isomerization. Excited-state decay from these
minima is very efficient due to stabilization of the chromophore’s S, charge distribution by specific hydrogen bond
interactions.



