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Molecular Dynamics Simulations 
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http://www.ks.uiuc.edu/Gallery/Movies/ 

This movie illustrates the conduction of KCL through a silica 
nanopore.  The nanopore has 1 nm radius, KCL is in solution and 
under 1 V bias 
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Molecular Dynamics (MD): main idea 

•   Setup system in initial configuration 

•   Solve Newton’s equations of motion: 
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•   Measure properties after system has reached 
equilibrium, e.g.   

 Energy, pressure, pair correlation 
functions 
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Similarities and differences with Monte Carlo (MC) 

Both MD and MC: 
•   use small systems, periodic boundary conditions, 
sample from relevant statistical mechanical 
ensembles 
•   subject to time scale/ergodicity constraints 

Differences: 
•   Natural ensemble for MD is microcanonical 
(const.-E), MC easier at const. T 
•   Actual dynamic evolution of system studied in 
MD, phase space sampling for MC 
•   Direct calculation of transport coeff. in MD 
•   MC more flexible, unphysical moves can be used 
to accelerate sampling 
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Simple MD code: 1.  Initialization 

Particle positions initialized at random or on a lattice 

Velocities need to be assigned: 

At equilibrium, mean-square velocity along any 
coordinate: 

Equilibrium velocity distribution is Maxwell-
Boltzmann: 
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Initialization (cont.) 

No need to start from Maxwell-Boltzmann, velocities 
are quickly randomized 

subroutine init  !  initialization of MD program	
sumv(1:3) = 0.   ! sum of velocities along each coordinate	
sumv2 = 0.       ! sum of squares of velocities	
do i=1,Npart	
   do j = 1,3	
      xyz(j,i) = ran(seed)*L   ! L is the box length	
      v(j,i)= ran(seed)-0.5    ! random velocity	
      sumv(j) = sumv(j) + v(j,i)	
      sumv2 = sumv2 + v(j,i)*v(j,i) 	
   enddo	
enddo	
sumv(1:3) = sumv(1:3)/Npart	
fs = sqrt(3*(Npart-1)*T/sumv2) ! because COM does not move	
! set COM motion to zero and mean kinetic T to desired value	
v(1:3,1:Npart) = fs*(v(1:3,1:Npart) - sumv(1:3)) 	
rm(1:3,1:Npart) = xyz(1:3,1:Npart) - v(1:3,1:Npart)*dt	
return	
end!
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Initialization (cont.) 

As equilibration proceeds, temperature is going to 
drift away from its desired value.  The mean 
“kinetic” temperature of the system at any time is: 

The factor N – 1 appears because the center of mass 
(COM) is fixed in space. 

The velocity rescaling shown on slide 5 can be applied 
at any time; however, it is not a proper way to 
achieve constant-temperature conditions and it does 
not conserve energy. 
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Simple MD code: 2.  Moving the particles 

We first need to evaluate the forces acting on each 
particle.  In general, the force components are: 
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For the LJ potential (with ε=σ=1), this becomes: 
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The force calculation code segment is executed 
millions and millions of times, so be very careful how 
you write it! 
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Force calculation code 
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!  Determine force f and energy en	
f = 0. ; en = 0.        !  Array and scalar set to 0	
do i=1,Npart-1	
   do j = i+1,Npart	
      dr(1:3) = xyz(1:3,i) – xyz(1:3,j)  ! 1=x, 2=y, 3=z	
      dr(1:3) = dr(1:3) – nint(dr(1:3)*aL) ! aL is 1/L	
      r2 = dr(1)*dr(1) + dr(2)*dr(2) + dr(3)*dr(3)	
      r2i = 1./r2  ; r6i = r2i*r2i*r2i	
      ff(1:3) = r2i*r6i*(r6i-0.5)	
         do idim=1,3	
            f(idim,i) = f(idim,i) + ff(idim)*dr(idim)	
            f(idim,j) = f(idim,j) - ff(idim)*dr(idim)	
         enddo       	
       en = en + r6i*(r6i-1.)	
   enddo	
enddo	
f = 48.*f ; en = 4.*en 	

No cutoff or shift is applied to the code above (will lead to 
instability and loss of energy conservation) 

Moving the particles (cont.) 

Once the forces have been calculated, the equations 
of motions can now be integrated forward in time. 

There are many possible numerical integration 
schemes.  Molecular dynamics integrators must 
satisfy the following conditions: 

•   calculation of forces is expensive and can only 
be done once per time step 
•   long-term energy conservation is important 
•   time reversibility and conservation of volume in 
phase space are required (“symplectic 
integrators”) 

Some of the simplest methods are also the best. 
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Moving the particles (cont.): The Verlet algorithm 
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r(t + Δt)= r(t)+ v(t)Δt + f (t)
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summing	
  these	
  two	
  expressions:

r(t + Δt)+ r(t − Δt)= 2r(t)+ f (t)
m

Δt2 +O(Δt4 )

subtracting	
  :

v(t)= r(t + Δt)− r(t − Δt)
2Δt

+O(Δt2)

Positions are more accurately known than velocities 

Moving the particles (cont.): Velocity Verlet 
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r(t + Δt)= r(t)+ v(t)Δt + f (t)
2m

Δt2

v(t + Δt)= v(t)+ f (t)+ f (t + Δt)
2m

Δt

This is equivalent to the original Verlet for the 
positions, but has better short-term energy 
conservation because of more accurate velocity 
calculations 
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Time steps and energy drift 
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For any time step, numerical errors that accumulate result in 
long-term “energy drift” – an exponential increase in energy for 
very large number of integration steps. 

For Verlet integration, the practical limit for the maximum time 
step is 

Where ω is the fastest vibrational time scale in the system (see 
link).  For typical “soft matter” systems with bending / torsional 
potentials, this is approximately 1 - 2  fs, depending on whether 
explicit-hydrogens and fixed bond lengths are used. 

For the LJ system, the reduced time is:     
[ For Ar, the unit of time is ~2 ps ]   

Typically, Δt* = 0.005 for stability  [= 10 fs for Ar]  

	
  	
  
Δt =

2
ω

	
  	
  
t * =

t

σ ε /m

Liapunov Instability 
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r(t)= f rN(0),pN(0),t( )
′r (t)= f rN(0),pN(0)+ ε,t( )
r− ′r = Δr(t)

For short times,   	
  	
  	
  Δr(t)∝ε

For long times,   	
  	
  	
  Δr(t)∝ε× exp(λt)

λ:  Liapunov exponent (positive) 
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