
1

ChE 520 Fall 2009

Molecular Dynamics Simulations

1

2

http://www.ks.uiuc.edu/Gallery/Movies/

This movie illustrates the conduction of KCL through a silica
nanopore. The nanopore has 1 nm radius, KCL is in solution and
under 1 V bias

2

Molecular Dynamics (MD): main idea

•  Setup system in initial configuration

•  Solve Newton’s equations of motion:

 	
 	

d2

ri

dt2
=

Fi
mi

i =1,2,...,N

•  Measure properties after system has reached
equilibrium, e.g.

 Energy, pressure, pair correlation
functions

3

Similarities and differences with Monte Carlo (MC)

Both MD and MC:
•  use small systems, periodic boundary conditions,
sample from relevant statistical mechanical
ensembles
•  subject to time scale/ergodicity constraints

Differences:
•  Natural ensemble for MD is microcanonical
(const.-E), MC easier at const. T
•  Actual dynamic evolution of system studied in
MD, phase space sampling for MC
•  Direct calculation of transport coeff. in MD
•  MC more flexible, unphysical moves can be used
to accelerate sampling

4

3

Simple MD code: 1. Initialization

Particle positions initialized at random or on a lattice

Velocities need to be assigned:

At equilibrium, mean-square velocity along any
coordinate:

Equilibrium velocity distribution is Maxwell-
Boltzmann:

	
 	

< vx

2 >=< v y
2 >=< vz

2 >=
kT

m

	
 	

P(v)=

exp − βmv
2

2

⎛

⎝
⎜

⎞

⎠
⎟

(2πmkT)3/2 5

Initialization (cont.)

No need to start from Maxwell-Boltzmann, velocities
are quickly randomized

subroutine init ! initialization of MD program	
sumv(1:3) = 0. ! sum of velocities along each coordinate	
sumv2 = 0. ! sum of squares of velocities	
do i=1,Npart	
 do j = 1,3	
 xyz(j,i) = ran(seed)*L ! L is the box length	
 v(j,i)= ran(seed)-0.5 ! random velocity	
 sumv(j) = sumv(j) + v(j,i)	
 sumv2 = sumv2 + v(j,i)*v(j,i) 	
 enddo	
enddo	
sumv(1:3) = sumv(1:3)/Npart	
fs = sqrt(3*(Npart-1)*T/sumv2) ! because COM does not move	
! set COM motion to zero and mean kinetic T to desired value	
v(1:3,1:Npart) = fs*(v(1:3,1:Npart) - sumv(1:3)) 	
rm(1:3,1:Npart) = xyz(1:3,1:Npart) - v(1:3,1:Npart)*dt	
return	
end!

6

4

Initialization (cont.)

As equilibration proceeds, temperature is going to
drift away from its desired value. The mean
“kinetic” temperature of the system at any time is:

The factor N – 1 appears because the center of mass
(COM) is fixed in space.

The velocity rescaling shown on slide 5 can be applied
at any time; however, it is not a proper way to
achieve constant-temperature conditions and it does
not conserve energy.

	
 	

Tkin(t)=

miui
2(t)

3k(N −1)i=1

N

∑

7

Simple MD code: 2. Moving the particles

We first need to evaluate the forces acting on each
particle. In general, the force components are:

	
 	

fx(r)=

48x
r2

1
r12

−
1
2r6

⎛

⎝⎜
⎞

⎠⎟

8

For the LJ potential (with ε=σ=1), this becomes:

	
 	

fx(r)= −

∂U(r)
∂x

= −
∂r
∂x

∂U(r)
∂r

= −
∂ x2 + y2 + z2

∂x
∂U(r)
∂r

= −
x

r

∂U(r)
∂r

The force calculation code segment is executed
millions and millions of times, so be very careful how
you write it!

5

Force calculation code

9

! Determine force f and energy en	
f = 0. ; en = 0. ! Array and scalar set to 0	
do i=1,Npart-1	
 do j = i+1,Npart	
 dr(1:3) = xyz(1:3,i) – xyz(1:3,j) ! 1=x, 2=y, 3=z	
 dr(1:3) = dr(1:3) – nint(dr(1:3)*aL) ! aL is 1/L	
 r2 = dr(1)*dr(1) + dr(2)*dr(2) + dr(3)*dr(3)	
 r2i = 1./r2 ; r6i = r2i*r2i*r2i	
 ff(1:3) = r2i*r6i*(r6i-0.5)	
 do idim=1,3	
 f(idim,i) = f(idim,i) + ff(idim)*dr(idim)	
 f(idim,j) = f(idim,j) - ff(idim)*dr(idim)	
 enddo 	
 en = en + r6i*(r6i-1.)	
 enddo	
enddo	
f = 48.*f ; en = 4.*en 	

No cutoff or shift is applied to the code above (will lead to
instability and loss of energy conservation)

Moving the particles (cont.)

Once the forces have been calculated, the equations
of motions can now be integrated forward in time.

There are many possible numerical integration
schemes. Molecular dynamics integrators must
satisfy the following conditions:

•  calculation of forces is expensive and can only
be done once per time step
•  long-term energy conservation is important
•  time reversibility and conservation of volume in
phase space are required (“symplectic
integrators”)

Some of the simplest methods are also the best.
10

6

Moving the particles (cont.): The Verlet algorithm

11

 	
 	

r(t + Δt)= r(t)+ v(t)Δt + f (t)
2m

Δt2 +
Δt3

3
r +O(Δt4)

r(t − Δt)= r(t)− v(t)Δt + f (t)
2m

Δt2 −
Δt3

3
r +O(Δt4)

summing	
 these	
 two	
 expressions:

r(t + Δt)+ r(t − Δt)= 2r(t)+ f (t)
m

Δt2 +O(Δt4)

subtracting	
 :

v(t)= r(t + Δt)− r(t − Δt)
2Δt

+O(Δt2)

Positions are more accurately known than velocities

Moving the particles (cont.): Velocity Verlet

12

	
 	

r(t + Δt)= r(t)+ v(t)Δt + f (t)
2m

Δt2

v(t + Δt)= v(t)+ f (t)+ f (t + Δt)
2m

Δt

This is equivalent to the original Verlet for the
positions, but has better short-term energy
conservation because of more accurate velocity
calculations

7

Time steps and energy drift

13

For any time step, numerical errors that accumulate result in
long-term “energy drift” – an exponential increase in energy for
very large number of integration steps.

For Verlet integration, the practical limit for the maximum time
step is

Where ω is the fastest vibrational time scale in the system (see
link). For typical “soft matter” systems with bending / torsional
potentials, this is approximately 1 - 2 fs, depending on whether
explicit-hydrogens and fixed bond lengths are used.

For the LJ system, the reduced time is:
[For Ar, the unit of time is ~2 ps]

Typically, Δt* = 0.005 for stability [= 10 fs for Ar]

	
 	

Δt =

2
ω

	
 	

t * =

t

σ ε /m

Liapunov Instability

14

	
 	
 	

r(t)= f rN(0),pN(0),t()
′r (t)= f rN(0),pN(0)+ ε,t()
r− ′r = Δr(t)

For short times, 	
 	
 	
 Δr(t)∝ε

For long times, 	
 	
 	
 Δr(t)∝ε× exp(λt)

λ: Liapunov exponent (positive)

8

15

